Answer on the question \#62973, Chemistry / Physical Chemistry

Question:

The equilibrium vapour pressure over a solid at 300 K is known to be 20 Torr, and the enthalpy of sublimation is $8.0 \mathrm{kcal} \mathrm{mol}-1$. Determine the equilibrium vapour pressure over the solid at 350 K , assuming that deltaH sublimation is a constant

Solution:

To solve this, we use Clausius-Clapeyron equation.
This equation relates the vapour pressure, enthalpy of sublimation and temperature:

$$
\ln (P)=\text { const }-\frac{\Delta H_{\text {subl }}}{R T}
$$

Then, vapour pressure change for different temperatures is:

$$
\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{\Delta H_{\text {subl }}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

Then, $T_{1}=300 \mathrm{~K}$ and $T_{2}=350 \mathrm{~K}$.
In its turn, $P_{1}=20 \mathrm{Torr}$, and P_{2} is the value we need to compute (vapour pressure at 350 K). R is the gas constant, $R=1.987 \frac{\mathrm{cal}}{\mathrm{K} \cdot \mathrm{mol}}$.
If we assume, that the change in heat capacity for this temperature interval is zero ($\Delta c_{p}=0$), sublimation enthalpy $\Delta H_{\text {subl }}$ is equal at both temperatures. Now, we should rearrange the equation to get $\ln \left(P_{2}\right)$, knowing that $\ln \left(\frac{P_{2}}{P_{1}}\right)=\ln \left(P_{2}\right)-\ln \left(P_{1}\right)$:

$$
\begin{gathered}
\ln \left(P_{2}\right)=\ln \left(P_{1}\right)+\frac{\Delta H_{\text {subl }}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(P_{2}\right)=\ln (20 \mathrm{Torr})+\frac{8 \cdot 10^{3} \frac{\mathrm{cal}}{\mathrm{~mol}}}{1.987 \frac{\mathrm{cal}}{\mathrm{~K} \cdot \mathrm{~mol}}}\left(\frac{1}{300 \mathrm{~K}}-\frac{1}{350 \mathrm{~K}}\right) \\
P_{2}=136 \mathrm{Torr}
\end{gathered}
$$

Answer: 136 Torr

