Answer on Question #62840, Chemistry / General Chemistry

Question

Calculate the energy of one photon of yellow light in J that has a wavelength of 425nm **Solution:**

1. Convert the wavelength of 425nm to m: 10⁻⁹m= 1 nm, so: 425nm x (10⁻⁹m) = 4.25 x 10⁻⁷m 2. By the first Planck's equation: E = hv, where E - energy h - Planck's v - frequency 3. By the second Planck's equation:: c = λν, where c - speed of light λ - wavelength v - frequency 4. Then: $E=hc/\lambda$ h=6.62 x 10⁻³⁴ J x s c=3 x 10⁸ m/s λ=4.25 x 10⁻⁷m $E=(6.62 \times 10^{-34} \times 3 \times 10^8)/4.25 \times 10^{-7}$ E=4.67 x 10⁻¹⁹ J Answer: 4.67 x 10-19 J

https://www.AssignmentExpert.com