Answer on the question \#62727, Chemistry / Physical Chemistry

Question:

NH4HS(s) evaporates in an evacuated container at 298 K as follows:
$\mathrm{NH} 4 \mathrm{HS}(\mathrm{s})=\mathrm{NH} 3(\mathrm{~g})+\mathrm{H} 2 \mathrm{~S}(\mathrm{~g})$
What will be the pressure of each gas at equilibrium if $\mathrm{Kp}=1.10 \cdot 10^{9} \mathrm{~Pa}^{2}$ at 298 K

Solution:

Equilibrium constant for the reaction above is defined as follows:

$$
K_{p}=p_{N H_{3}} \cdot p_{H_{2} S}
$$

According to the reaction stoichiometry, $p_{N H_{3}}=p_{H_{2} S}$. Then, the pressure of each gas is:

$$
p_{N H_{3}}=p_{H_{2} S}=\sqrt[2]{K_{p}}=\sqrt[2]{1.10 \cdot 10^{9}\left(P a^{2}\right)}=3.3 \cdot 10^{4} \mathrm{~Pa}
$$

Answer: $p_{N H_{3}}=p_{H_{2} S}=3.3 \cdot 10^{4} \mathrm{~Pa}$

