Answer to Question \#62534, Chemistry / Physical Chemistry

When $5.15 \times 10^{-2} \mathrm{~kg}$ of an organic compound was dissolved in 3.50 kg of chloroform, the boiling point of chloroform was raised by 0.320 K . calculate the molar mass of the organic compound. molar elevation constant for chloroform is 3.90 K kg mol .

Answer:

Increase of the boiling point of infinitely dilute solutions of non-volatile substances is not dependent on the nature of the solute and directly proportional to the molal concentration of the solution:

$$
\begin{gathered}
\Delta T=E_{k} m \\
m=\frac{n(\mathrm{~mol})}{m_{\text {solv }}(\mathrm{kg})}=\frac{m}{M_{r} \times m_{\text {solv }}} \\
\Delta T=E_{k} \frac{\mathrm{~m}}{M_{r} \times m_{\text {solv }}} \\
M_{r}=\frac{E_{k} \times m}{\Delta T \times m_{\text {solv }}} \\
M_{r}=\frac{3.90 \mathrm{~K} \times \frac{\mathrm{kg}}{\mathrm{~mol}} \times 5.15 \times 10^{-2} \mathrm{~kg}}{0.32 \mathrm{~K} \times 3.5 \mathrm{~kg}}=0.180 \frac{\mathrm{~kg}}{\mathrm{~mol}}=180 \frac{\mathrm{~g}}{\mathrm{~mol}}
\end{gathered}
$$

