Question \#62368, Chemistry / Physical Chemistry | completed

Question:

Calculate the molecular mass of 9.21 g non-volatile organic compound, dissolved in 50 g of pure water at $25^{\circ} \mathrm{C}$, which depresses the vapor pressure of the water from 3.16×10^{3} to $3.10 \times 10^{3} \mathrm{~N} / \mathrm{m}^{-2}$.

Solution:

Raoult's law:
$\Delta \mathrm{p} / \mathrm{p}=\mathrm{N}$, molar $\%$
$(3.16-3.10) \times 10^{3} / 3.16 \times 10^{3}=\mathrm{N}$
$\mathrm{N}=\mathrm{m}(\mathrm{A}) / \mathrm{M}(\mathrm{A}) \div\left(\mathrm{m}(\mathrm{A}) / \mathrm{M}(\mathrm{A})+\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$

A - organic compound, $\mathrm{M}(\mathrm{A})$ or $\mathrm{Mr}(\mathrm{A})=\mathrm{x}$, molecular mass
then: $(3.16-3.10) / 3.16=9.21 / \mathrm{x} \div(9.21 / \mathrm{x}+50 / 18)$
$\mathrm{x}=171.3$ or $\mathrm{Mr}(\mathrm{A})=171.3$

Answer: 171.3

