Answer on Question \#62272, Chemistry / General Chemistry

1. A scientist studying the reaction between decaborane and oxygen mixed 75.0 g of B 10 H 18 with 145.0 g of O 2 . This reaction generates B 2 O 3 and H 2 O as the only products. Compute how many grams of B2O3 are present after the reaction went to completion

Solution:

$$
\begin{aligned}
& \mathrm{B}_{10} \mathrm{H}_{18}+12 \mathrm{O}_{2}=5 \mathrm{~B}_{2} \mathrm{O}_{3}+9 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{M}\left(\mathrm{~B}_{10} \mathrm{H}_{18}\right)=10 \times 10.8+18 \times 1=126 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{n}\left(\mathrm{~B}_{10} \mathrm{H}_{18}\right)=\frac{75.0 \mathrm{~g}}{126 \mathrm{~g} / \mathrm{mol}}=0.595 \mathrm{~mol} \\
& \mathrm{n}\left(\mathrm{O}_{2}\right)=\frac{145.0 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=4.531 \mathrm{~mol}
\end{aligned}
$$

We need:
$\mathrm{n}\left(\mathrm{B}_{10} \mathrm{H}_{18}\right): \mathrm{n}\left(\mathrm{O}_{2}\right)=1: 12$ (reaction),
we have: 1:7.6.
$\mathrm{B}_{10} \mathrm{H}_{18}$ - excess
O_{2} - deficit.
$\mathrm{M}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)=70 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)=\frac{145.0 \mathrm{~g} \times 5 \times 70 \mathrm{~g} / \mathrm{mol}}{12 \times 32 \mathrm{~g} / \mathrm{mol}}=132.161 \mathrm{~g}$.

Answer: $\mathrm{m}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)=132.161 \mathrm{~g}$.

