Answer on question \#62247, Chemistry / General Chemistry

For each reaction, calculate the mass of the product that forms when 14.4 g of the reactant in red completely reacts. Assume that there is more than enough of the other reactant.
$2 \mathrm{~K}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})$
Express your answer in grams to three significant figures.
$2 \mathrm{~K}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{KBr}(\mathrm{s})$
Express your answer in grams to three significant figures.
$4 \mathrm{Cr}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}$ (s)
Express your answer in grams to three significant figures.
$2 \mathrm{Sr}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SrO}(\mathrm{s})$
Express your answer in grams to three significant figures.

Solution:

$2 \mathrm{~K}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})$

moles $\mathrm{Cl}_{2}=14.4 \mathrm{~g} / 70.906 \mathrm{~g} / \mathrm{mol}=0.203 \mathrm{~mol}$
moles KCl produced $=2 \times 0.203 \mathrm{~mol}=0.406 \mathrm{~mol}$
mass $\mathrm{KCl}=0.406 \mathrm{~mol} \times 78.196 \mathrm{~g} / \mathrm{mol}=31.7 \mathrm{~g}$

Answer: 31.7 g

$2 \mathrm{~K}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{KBr}(\mathrm{s})$

moles $\mathrm{Br}_{2}=14.4 \mathrm{~g} / 159.808 \mathrm{~g} / \mathrm{mol}=0.0901$
moles $\mathrm{KBr}=2 \times 0.0901=0.180$
mass $\mathrm{KBr}=0.180 \mathrm{~mol} \times 119.0 \mathrm{~g} / \mathrm{mol}=21.4 \mathrm{~g}$

Answer: $\mathbf{2 1 . 4 \mathrm { g }}$

$4 \mathrm{Cr}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$

moles $\mathrm{O}_{2}=14.4 \mathrm{~g} / 32 \mathrm{~g} / \mathrm{mol}=0.450$
moles $\mathrm{Cr}_{2} \mathrm{O}_{3}=0.450 \times 2 / 3=0.300$
mass $\mathrm{Cr}_{2} \mathrm{O}_{3}=0.300 \mathrm{~mol} \times 151.99 \mathrm{~g} / \mathrm{mol}=45.6 \mathrm{~g}$

Answer: $\mathbf{4 5 . 6 \mathrm { g }}$

$2 \mathrm{Sr}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SrO}(\mathrm{s})$

moles $\mathrm{Sr}=14.4 \mathrm{~g} / 175.24 \mathrm{~g} / \mathrm{mol}=0.0822$
moles $\mathrm{SrO}=2 \times 0.0822=0.1644$
mass $\mathrm{SrO}=0.1644 \mathrm{~mol} \times 103.62 \mathrm{~g} / \mathrm{mol}=17.0 \mathrm{~g}$
Answer: $\mathbf{1 7 . 0} \mathrm{g}$

