Answer on the question \#61919, Chemistry / General Chemistry

Question:

A certain reaction $A+B$--> products has the following rate law: rate of consumption of $A=k[A] 3$. If the rate of consumption of A is 1.0 M / s what will be the rate when the concentration of A is doubled and that of B is also doubled?

Solution:

When the rate of consumption of A is $1.0 \mathrm{M} / \mathrm{s}$, the rate constant of the reaction is:

$$
k=1.0 /\left[A_{1}\right]^{3}
$$

Then, when the concentration of A is doubled, the rate of consumption of A is:

$$
v_{A}=\frac{1.0}{\left[A_{1}\right]^{3}} \cdot\left[2 A_{1}\right]^{3}=1.0 \cdot 2^{3}=8.0 \mathrm{M} / \mathrm{s}
$$

According to the expression of the rate of consumption of A, the concentration of B doesn't have the effect on this rate.

Answer: $8.0 \mathrm{M} / \mathrm{s}$

