Answer on Question \#61823 - Chemistry - General Chemistry

Question:

I have a block of pure copper that is $5.5 \mathrm{~cm} \times 3.0 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. How many atoms of copper do I have?

Answer: $\mathbf{2 . 1 0 \times 1 0 ^ { 2 4 }}$

Block volume:

$$
V=5.5 \mathrm{~cm} \times 3.0 \mathrm{~cm} \times 1.5 \mathrm{~cm}=24.75 \mathrm{~cm}^{3}
$$

Copper density:

$$
\mathrm{d}=8.96 \mathrm{~g} / \mathrm{cm}^{3}
$$

Block mass:

$$
\mathrm{m}=\mathrm{V} \times \mathrm{d}=24.75 \mathrm{~cm}^{3} \times 8.96 \mathrm{~g} / \mathrm{cm}^{3}=221.76 \mathrm{~g}
$$

Copper atomic weight:

$$
\mathrm{A}=63.55 \mathrm{~g} / \mathrm{mol}
$$

Chemical quantity of copper in block:
$\mathrm{n}=\mathrm{m} / \mathrm{A}=221.76 \mathrm{~g} / 63.55 \mathrm{~g} / \mathrm{mol}=3.49 \mathrm{~mol}$
Avogadro constant:
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Number of atoms:
$\mathrm{N}=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}=3.49 \mathrm{~mol} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}=2.10 \times 10^{24}$

