Answer on Question \# 61789 - Chemistry - General Chemistry

Aqueous hydrochloric acid HCl will react with solid sodium hydroxide NaOH to produce aqueous sodium chloride NaCl and liquid water $\mathrm{H}_{2} \mathrm{O}$. Suppose 1.8 g of hydrochloric acid is mixed with 3.66 g of sodium hydroxide. Calculate the maximum mass of water that could be produced by the chemical reaction. Be sure your answer has the correct number of significant digits.

Solution:

The reaction can be represented with a following equation:

$$
\mathrm{HCl}+\mathrm{NaOH}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

According to the equation, equal amounts of chemical agents and resultant products (in moles) participate in this reaction.

The amount of hydrochloric acid is as follows:

$$
v_{\mathrm{HCl}}=\frac{\mathrm{m}_{\mathrm{HCl}}}{\mathrm{M}_{\mathrm{HCl}}}=\frac{\mathrm{m}_{\mathrm{HCl}}}{\mathrm{~A}_{\mathrm{H}}+\mathrm{A}_{\mathrm{Cl}}}=\frac{1.8}{1+35.46}=0.05 \text { [moles] }
$$

where m is the substance mass, A is the atomic mass of an element.
The amount of sodium hydroxide is as follows:

$$
v_{\mathrm{NaOH}}=\frac{m_{\mathrm{NaOH}}}{\mathrm{M}_{\mathrm{NaOH}}}=\frac{\mathrm{m}_{\mathrm{NaOH}}}{\mathrm{~A}_{\mathrm{Na}}+\mathrm{A}_{\mathrm{O}}+\mathrm{A}_{\mathrm{H}}}=\frac{3.66}{23+16+1}=0.09[\text { moles }] .
$$

Since the amount of sodium hydroxide exceeds the amount of hydrochloric acid, the maximum amount of each substance participating in the reaction is $v=v_{\mathrm{HCl}}=0.05[$ moles $]$.

Therefore, the maximum amount of water that can be produced is as follows:

$$
\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}} v_{\mathrm{H}_{2} \mathrm{O}}=\left(2 \mathrm{~A}_{\mathrm{H}}+\mathrm{A}_{\mathrm{O}}\right) \times \mathrm{v}=(2 \times 1+16) \times 0.05=0.9[\mathrm{~g}] .
$$

Answer: $0.9[\mathrm{~g}]$.

