Answer on Question \#60384-Chemistry - General Chemistry

Question:
When a 7.10 g sample of lithium nitrate dissolves in 28.00 g of water in a coffee-cup calorimeter, the temperature rose from $25.20^{\circ} \mathrm{C}$ to $27.22^{\circ} \mathrm{C}$. Assume that the solution has the same specific heat as liquid water, i.e., $4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. Give the equation for the dissolution of solid lithium nitrate in water.

Solution:

1) Write down the generic equation:
$\mathrm{LiNO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Li}^{+} a q+\mathrm{NO}_{3}-a q+\mathrm{H}_{2} \mathrm{O}+\mathrm{Q}$,
Where Q - is heat of dissolution.
2) We have to find the amount of heat per 1 mole of compound.

The total amount of heat in experiment:
$\mathrm{Q}_{\text {total }}=\Delta \mathrm{T}$ (temperature change)* $\mathrm{m}_{\text {solution }}$ (mass of solution)* ${ }^{\text {c (specific heat) } . ~}$
$Q_{\text {total }}=\left(27.22^{\circ} \mathrm{C}-25.20^{\circ} \mathrm{C}\right)^{*}(7.10 \mathrm{~g}+28.00 \mathrm{~g})^{*} 4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}=296.65 \mathrm{~J}$.
The heat of dissolution (per mole)
$\mathrm{Q}=\left(\mathrm{Q}_{\text {total }} / \mathrm{m} \text { (mass of compound)}\right)^{*} \mathrm{M}$ (molar mass of compound).
MLiNO3 $=6.94+14.01+3^{*}(16.00)=68.95 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Q}=(296.65 \mathrm{~J} / 7.10 \mathrm{~g})^{*} 68.95 \mathrm{~g} / \mathrm{mol}=2880.85 \mathrm{~J} / \mathrm{mol}(2.88 \mathrm{~kJ} / \mathrm{mol})$

Answer:

$\mathrm{LiNO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Li}^{+} a q+\mathrm{NO}_{3}{ }^{-} a q+\mathrm{H}_{2} \mathrm{O}+2.88 \mathrm{~kJ}$

