Answer on the question \#60311, Chemistry / General Chemistry

Question:

At 55 degree Celsius and 1 atmosphere N2O2 is 50.3% dissociated to NO2.Calculate the density and the average molecular weight of the gas

Solution:

Let's write the equation of reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{2} \leftrightarrow 2 \mathrm{NO}
$$

Density of the system is:

$$
\mathrm{d}=\frac{\mathrm{m}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)+\mathrm{m}(\mathrm{NO})}{\mathrm{V}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)+\mathrm{V}\left(\mathrm{NO}_{2}\right)}
$$

Let's look at each term of this equation. All them can be expressed as a function of number of the moles: mass with a molar mass coefficient and volume through the ideal gas equation:

$$
\begin{gathered}
\mathrm{m}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)=\mathrm{n}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \cdot \mathrm{M}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \\
\mathrm{m}(\mathrm{NO})=\mathrm{n}(\mathrm{NO}) \cdot \mathrm{M}(\mathrm{NO}) \\
\mathrm{V}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)=\frac{\mathrm{n}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \cdot \mathrm{RT}}{\mathrm{p}} \\
\mathrm{~V}(\mathrm{NO})=\frac{\mathrm{n}(\mathrm{NO}) \cdot \mathrm{RT}}{\mathrm{p}} .
\end{gathered}
$$

If 50.03% of $\mathrm{N}_{2} \mathrm{O}_{2}$ is dissociated and if the initial number of the moles of $\mathrm{N}_{2} \mathrm{O}_{2}$ was N , then the equilibrium moles of substances are:

$$
\begin{gathered}
0.497 \mathrm{~N}=\mathrm{n}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \\
2 \cdot 0.503 \mathrm{~N}=\mathrm{n}(\mathrm{NO}) .
\end{gathered}
$$

Let's include now all that we have into the equation for density:

$$
\begin{aligned}
& \mathrm{d}=\frac{\mathrm{n}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \cdot \mathrm{M}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)+\mathrm{n}(\mathrm{NO}) \cdot \mathrm{M}(\mathrm{NO})}{\frac{\mathrm{n}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \cdot \mathrm{RT}}{\mathrm{p}}+\frac{\mathrm{n}(\mathrm{NO}) \cdot \mathrm{RT}}{\mathrm{p}}}=\frac{\mathrm{Np}}{\mathrm{NRT}} \cdot \frac{0.497 \mathrm{M}\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)+2 \cdot 0.503 \mathrm{M}(\mathrm{NO})}{0.497+2 \cdot 0.503} \\
& \begin{array}{c}
\mathrm{d}=\frac{101325 \mathrm{~Pa}}{\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \cdot(273.15+55 \mathrm{~K})} \\
\mathrm{d}=1483 \mathrm{~g} \mathrm{~m}^{-3} .
\end{array} \\
&
\end{aligned}
$$

To calculate the average molar mass, we need molar percentages of gases.

$$
x\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)=\frac{0.497}{1.503}=33 \%, \quad x(\mathrm{NO})=67 \%
$$

Average molecular weight of gas is:

$$
\begin{gathered}
M=M\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right) \cdot x\left(\mathrm{~N}_{2} \mathrm{O}_{2}\right)+\mathrm{M}(\mathrm{NO}) \cdot x(\mathrm{NO}) \\
M=60.0122 \cdot 0.33+30.00610 \cdot 0.67=39.91 \mathrm{~g} \mathrm{~mol}^{-1} .
\end{gathered}
$$

Answer: $1483 \mathrm{~g} \mathrm{~m}^{-3} ; 39.91 \mathrm{~g} \mathrm{~mol}^{-1}$

