Answer on Question \# 60259-Chemistry - Physical Chemistry

One molecule of haemoglobin, Hb , can bind with four molecules of oxygen according to the following equation.
$\mathrm{Hb}(\mathrm{aq})+4 \mathrm{O}_{2}(\mathrm{aq})=\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}(\mathrm{aq})$
When the equilibrium concentration of O_{2} is $7.6 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$, the equilibrium concentrations of Hb and $\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}$ are equal.

What is the value of K_{c} for this equilibrium?

Solution

The equilibrium constant expression for the reaction given is
$K_{c}=\frac{\left[\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}\right]}{[\mathrm{Hb}]\left[\mathrm{O}_{2}\right]^{4}} ;$
As the equilibrium concentrations of Hb and $\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}$ are equal, the equilibrium constant expression transforms to
$K_{c}=\frac{1}{\left[O_{2}\right]^{4}} ;$
$K_{c}=\frac{1}{\left(7.6 \times 10^{-6}\right)^{4}}=3.0 \times 10^{20}$.
Answer: $K_{c}=3.0 \times 10^{20}$.

