Answer on Question \#60239, Chemistry / General Chemistry

1. Under conditions of constant temperature, 200 cm 3 of H 2 gas pressure of 800 mmhg was forced into a cylinder of volume 600 cm 3 , which already contained O 2 gas (partial pressure of 400 mmhg) and Ne gas (partial pressure of 300 mmhg .)
What's the final pressure in the cylinder and determine the mole fraction of each gas in the final mixture.

Conditions:

$\mathrm{T}=$ const $=298 \mathrm{~K} ; \mathrm{V}\left(\mathrm{H}_{2}\right)=200 \mathrm{ml} ; \mathrm{P}\left(\mathrm{H}_{2}\right)=800 \mathrm{mmhg} ; \mathrm{V}_{\mathrm{cy}}=0.0006 \mathrm{~m}^{3} ; \mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}=400 \mathrm{mmhg} ; \mathrm{P}_{\mathrm{i}} \mathrm{Ne}=300 \mathrm{mmhg} ;$
$\mathrm{R}=8.3144598(48) \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$P_{\text {last }}$?
$\mathrm{X}_{\mathrm{i}} \mathrm{H}_{2}$-? $; \mathrm{X}_{\mathrm{i}} \mathrm{O}_{2}-$? $; \mathrm{X}_{\mathrm{i}} \mathrm{Ne}-$?;

Solution:

In a mixture of gases, each gas has a partial pressure which is the hypothetical pressure of that gas if it alone occupied the volume of the mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of each individual gas in the mixture. $\mathrm{P}_{\mathrm{i}}=$ $\mathrm{R}^{*} \mathrm{~T}^{*} \mathrm{~m}_{\mathrm{i}} /\left(\mathrm{Mi}^{*}{ }^{*}\right)$

1. $\mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}=400 \mathrm{mmhg}$. $760 \mathrm{mmhp}=101.325 \mathrm{kPa}$ hereof $\mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}=400 * 101325 / 760=53329(\mathrm{~Pa})$ From [1] $\mathrm{nO}_{2}=\mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}{ }^{*} \mathrm{~V} /(\mathrm{R} * \mathrm{~T})=53329 * 0.0006 /(8.31 * 298)=0.0129(\mathrm{~mol})$
2. $\mathrm{P}_{\mathrm{i}} \mathrm{Ne}=300 \mathrm{mmhg}$. $760 \mathrm{mmh} p=101.325 \mathrm{kPa}$ hereof $\mathrm{P} \mathrm{Ne}=300 * 101325 / 760=39997(\mathrm{~Pa})$ From [1] $\mathrm{nNe}=\mathrm{P}_{\mathrm{i}} \mathrm{Ne} * \mathrm{~V} /\left(\mathrm{R}^{*} \mathrm{~T}\right)=39997 * 0.0006 /(8.31 * 298)=0.0032(\mathrm{~mol})$
3. $\mathrm{P}_{\mathrm{i}} \mathrm{H}_{2}=800 \mathrm{mmhg}$. $760 \mathrm{mmhp}=101.325 \mathrm{kPa}$ hereof $\mathrm{P}_{\mathrm{i}} \mathrm{H}_{2}=800 * 101325 / 760=106658(\mathrm{~Pa})$ From [1] $\mathrm{nH}_{2}=\mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}{ }^{*} \mathrm{~V} /\left(\mathrm{R}^{*} \mathrm{~T}\right)=106658^{*} 0.0002 /(8.31 * 298)=0.0086(\mathrm{~mol})$
4. $n($ Sum $)=0.0086+0.0032+0.0129=0.0247(\mathrm{~mol})$
5. $\mathrm{X}_{\mathrm{i}} \mathrm{H}_{2}=0.0086 / 0.0247=0.348$
6. $\mathrm{X}_{\mathrm{i}} \mathrm{O}_{2}=0.0129 / 0.0247=0.522$
7. $X_{i} \mathrm{Ne}=0.0032 / 0.0247=0.129$
8. $\mathrm{P}_{\text {last }}=\mathrm{n}($ Sum $) * R * T / V=0.0247(\mathrm{~mol})^{*} 8.31\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) * 295(\mathrm{~K}) / 0.0006\left(\mathrm{~m}^{3}\right)=101944(\mathrm{~Pa})$

Answer: Plast $=101944(\mathrm{~Pa})$;

$\mathrm{X}_{\mathrm{i}} \mathrm{H}_{2}=\mathbf{0 . 3 4 8}$
$\mathrm{X}_{\mathrm{i}} \mathrm{O}_{2}=0.522$
$\mathrm{X}_{\mathrm{i}} \mathrm{Ne}=\mathbf{0 . 1 2 9}$

