Answer on Question: 60024

Process reaction:
$2 \mathrm{KClO}_{3}=2 \mathrm{KCl}+3 \mathrm{O}_{2}$
The ideal gas low:

$$
\mathrm{pV}=\mathrm{nRT}
$$

where p is the absolute pressure (SI unit pascals), V is the volume of gas (SI unit cubic metres), n is the amount of gas (SI unit moles), T is the temperature (SI unit kelvins)

Task data (to SI units)
$\mathrm{V}=680 \mathrm{ml}=0.68 \mathrm{I}=0.00068 \mathrm{~m}^{3}$
$\mathrm{T}=128 \mathrm{C}=401 \mathrm{~K}$
$\mathrm{P}=742$ torr $=98925.2 \mathrm{~Pa}$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ (ideal gas constant)
$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
$\mathrm{n}=0.0201 \mathrm{~mol}$
$\mathrm{nKClO}_{3}: \mathrm{n}(\mathrm{O} 2)=2: 3$
$\mathrm{m}(\mathrm{KClO} 3)=\mathrm{M}(\mathrm{KClO} 3) \times \mathrm{n}(\mathrm{KClO})=\mathrm{M}(\mathrm{KClO} 3) \times \frac{2}{3} n(O 2)$
$\mathrm{M}\left(\mathrm{KClO}_{3}\right)=122.55 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}\left(\mathrm{KClO}_{3}\right)=2.46 \mathrm{~g}$

