Answer on Question #59955, Chemistry / General Chemistry

1. if i add 45 grams of sodium chloride to 500 grams of water, what will the melting and boiling points be of the resulting solutions

Solution:

Freezing point depression:

 $\Delta T_{\rm F} = K_{\rm F} \cdot {\bf C}_{\rm m} \cdot i$

K_F - cryoscopic constant (1.86 for water solution)

C_m-molality of solution

i – van 't Hoff factor (NaCl – electrolyte,). If $\alpha \rightarrow 100\%$, *i* of NaCl = 2.

boiling point elevation:

 $\Delta T_{\rm b} = K_{\rm b} \cdot \mathbf{C}_{\rm m} \cdot i$

 K_{b-} ebullioscopic constant (0.51 for water solution)

$$C_{m} = \frac{n}{m}$$

$$n = \frac{m}{M} = \frac{45g}{58.5 g/mol} = 0.77 \text{ mol}$$

$$m - \text{mass of solvent} = 0.5 \text{ kg}$$

 $C_{\rm m} = \frac{n}{m} = \frac{0.77 \ mol}{0.5 \ kg} = 0.54 \ mol/kg$

$$\Delta T_{\rm F} = 1.86 \cdot 0.54 \cdot 2 = 2.01$$

 $\Delta T_{\rm F} = T_{\rm F}$ (water) - $T_{\rm F}$ (solution)

 $T_{\rm F (solution)} = T_{\rm F (water)} - \Delta T_{\rm F}$

 $T_{\rm F (solution)} = 0^{\circ} - 2.01 = -2.01^{\circ}$

Freezing point (T_F) = melting point = -2.01°C

 $\Delta T_{\rm b} = 0.51 \cdot 0.77 \cdot 2 = 0.76$

 $\Delta T_{\rm b} = T_{\rm b}$ (solution) - $T_{\rm b}$ (water)

 $T_{b \text{ (solution)}} = 100^{\circ} + 0.76 = 100.76^{\circ}\text{C}$

Answer: melting point = -2.01°C , boiling point = 100.76°C.