```
A) calculate the missing \(\Delta \mathrm{H}\) values (using Hess's Law) in the table below:
use \(\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}(\mathrm{~g})=-394 \mathrm{kj} \mathrm{mol}^{-1}\) AND \(\Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-286 \mathrm{kj} \mathrm{mol}^{-1}\)
```

	$\Delta \mathrm{H}_{\mathrm{f}} / \mathrm{k} \mathrm{J} \mathrm{mol}^{-1}$	$\Delta \mathrm{H}_{c} / \mathrm{k} \mathrm{J} \mathrm{mol}^{-1}$
CH_{4}		-890
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$		-1409
$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$	-125	
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$		-715
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$	-278	
$\mathrm{CH}_{3} \mathrm{COOH}$		-876
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$	-481	

B) use the data to calculate ΔH for the reaction
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \longrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Answers:
A) The equation we want for the formation of methane from its elements would be the following:

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) . ~=~ ? ~ ? ~
$$

You are given the three equations:

1. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ $\Delta \mathrm{H}_{1}=-394 \mathrm{kJmol}^{-1}$
2. $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\Delta \mathrm{H}_{2}=-286 \mathrm{kJmol}^{-1}$
3. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \ldots \ldots . . \Delta \mathrm{H}_{3}=-890 \mathrm{kJmol}^{-1}$

Equation 1 already has carbon on the left side. Equation 2 already has hydrogen on the left side, but we need two hydrogen molecules, so we can double the second equation. Equation 3 has methane on the left side instead of on the right side, so we need to reverse it.

1. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ \qquad $\Delta \mathrm{H}_{1}=-394 \mathrm{kJmol}^{-1}$
2. $2 \mathrm{H} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$. $\Delta \mathrm{H}_{2}=-572 \mathrm{kJmol}^{-1}$
3. $\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$.
$\Delta \mathrm{H}_{3}=+890 \mathrm{kJmol}^{-1}$

Eliminating oxygen, carbon dioxide, and water on both sides in all the three equations, we end up
with:
Total: $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$

$$
\Delta \mathrm{H}=-76 \mathrm{kJmol}^{-1}
$$

The standard heat of formation for methane is $-76 \mathrm{kJmol}^{-1}$.
Answer: $\boldsymbol{\Delta H} \mathbf{H}_{\mathbf{f}}\left(\mathbf{C H}_{4}\right)=\mathbf{- 7 6} \mathbf{~ k J m o l}^{-1}$
B) The combustion reaction is
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})=>2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

On the right hand side of the above expression we know the enthalpy of formation of the CO_{2} and the $\mathrm{H}_{2} \mathrm{O}$ from their atoms.

It is $2(-394)+2(-286)=-(788+572)=-1360 \mathrm{~kJ}$. This means that in forming 2 moles of $\mathrm{CO}_{2}(\mathrm{~g})$ and two moles of $\mathrm{H}_{2} \mathrm{O}(1)$ from their atoms, 1360 kJ are released.
To get there from the left hand side of the equation, we must first form one mole of $\mathrm{C}_{2} \mathrm{H}_{4}$ from its atoms and then burn it with 3 moles of $\mathrm{O}_{2} . \Delta \mathrm{H}_{\mathrm{c}}$ is the heat of combustion.
$\Delta \mathrm{Hf}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right]+\Delta \mathrm{Hc}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right]=2 \Delta \mathrm{H}^{\circ} \mathrm{f}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]+2 \Delta \mathrm{H}^{\circ} \mathrm{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]$
$\Delta \mathrm{Hf}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right]-1411 \mathrm{~kJ}=-1358.6 \mathrm{~kJ}$.
$\Delta \mathrm{Hf}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right]=52.4 \mathrm{~kJ} . . .$. and since we were talking about one mole of ethylene, that's $\mathbf{5 2 . 4}$
$\mathrm{kJ} /$ mole.
Answer: $\Delta \mathbf{H}_{\mathrm{f}}\left(\mathrm{C}_{\mathbf{2}} \mathrm{H}_{\mathbf{4}}\right)=\mathbf{5 2 . 4} \mathrm{kJmol}^{-1}$
C) Complete combustion of butane:
$2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}--->8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
Using standard enthalpies of formation, we imagine the reaction takes place by one mole of each starting molecule breaking apart into their elements in their standard states, and then reforming into the products. Obviously this is not really what happens but thermodynamically it is equivalent.
Here's some data:
$\Delta \mathrm{Hf}$ butane $(\mathrm{g})=-125 \mathrm{~kJ} / \mathrm{mol} 4 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g}) ~--->\mathrm{C} 4 \mathrm{H} 10(\mathrm{~g})$
$\Delta \mathrm{Hf} \mathrm{CO}_{2}(\mathrm{~g})=-394 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})--->\mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{Hf} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-286.0 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{O}_{2}(\mathrm{~g})--->\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
We can simply reverse the sign of the $\Delta \mathrm{Hf}$ for the breaking apart of the molecule, as opposed to its formation.
So our reaction comprises:
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$---> $8 \mathrm{C}(\mathrm{s})+10 \mathrm{H}_{2}(\mathrm{~g})+125 \mathrm{~kJ} / \mathrm{mol} \times 2=+250.0 \mathrm{~kJ} / \mathrm{mol}$
$8 \mathrm{O}_{2}(\mathrm{~g})+8 \mathrm{C}(\mathrm{s})$---> $8 \mathrm{CO}_{2}(\mathrm{~g})-394 \mathrm{~kJ} / \mathrm{mol} \times 8=-3152 \mathrm{~kJ} / \mathrm{mol}$
$10 \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$---> $10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})-286 \mathrm{~kJ} / \mathrm{mol} \times 10=-2860.0 \mathrm{~kJ} / \mathrm{mol}$
Adding these values together:
$+250.0 \mathrm{~kJ} / \mathrm{mol}+-3152.0 \mathrm{~kJ} / \mathrm{mol}+-2860.0 \mathrm{~kJ} / \mathrm{mol}=-5762.0 \mathrm{~kJ} / \mathrm{mol}$
We then half this to calculate the standard enthalpy of combustion, since in the above equation we used 2 moles of butane to keep whole numbers:
$-5762 \mathrm{~kJ} / \mathrm{mol} / 2=\mathbf{- 2 8 8 1} \mathbf{~ k J} / \mathbf{m o l}$
Answer: $\Delta \mathrm{H}_{\mathrm{c}}\left(\mathrm{C}_{4} \mathrm{H}_{\mathbf{1 0}}\right)=-\mathbf{2 8 8 1} \mathrm{kJmol}^{-1}$
D) $\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2}-->\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-726.4 \mathrm{~kJ} / \mathrm{mol}$

C (graphite) $+\mathrm{O}_{2}-->\mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}->\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
Calculate the enthalpy of formation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ from its elements:
C (graphite) $+2 \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}-->\mathrm{CH}_{3} \mathrm{OH}$
As for Hess's law:
-715 kJ mol-1 $=2 \mathrm{x}\left(-286 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+-394 \mathrm{~kJ} \mathrm{~mol}^{-1}-\Delta \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
$\Delta \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=\mathbf{- 2 5 1} \mathbf{~ k J ~ m o l}^{-1}$
Answer: $\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=-251 \mathrm{kJmol}^{-1}$
E) The balanced equation I we for ethanol is: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g})->2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ And from that, the three equations we have are:
$\mathrm{C}+\mathrm{O}_{2}->\mathrm{CO}_{2} \ldots \Delta \mathrm{H}=-394 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}+0.5 \mathrm{OH}->\mathrm{H}_{2} \mathrm{O} \ldots \Delta \mathrm{H}=-286 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{C}+3 \mathrm{H}_{2}+0.5 \mathrm{O}_{2}->\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \ldots \Delta \mathrm{H}=-278 \mathrm{~kJ} / \mathrm{mol}$
Then we got:
(278) - (2×394) - (3×286) $=\mathbf{- 1 3 6 8} \mathbf{k J} / \mathbf{m o l}$

Answer: $\Delta \mathrm{H}_{\mathrm{c}}\left(\mathrm{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathrm{OH}\right)=\mathbf{- 1 3 6 8} \mathrm{kJmol}^{-1}$
J) $\mathrm{C}+\mathrm{O}_{2}->\mathrm{CO}_{2} \Delta \mathrm{H}_{1}=-394 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}->\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{2}=-286 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{O}_{2}->2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{3}=876 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{C}+\mathrm{O}_{2}+2 \mathrm{H}_{2}->\mathrm{CH}_{3} \mathrm{COOH} \Delta \mathrm{H}_{4}-$?
Therefore $\mathrm{H}_{4}=2 * \mathrm{H}_{1}+2 * \mathrm{H}_{2}-\mathrm{H}_{3}=-394-286+876=196 \mathbf{k J} / \mathbf{m o l}$
Answer: $\Delta \mathrm{H}_{\mathrm{f}}\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}\right)=\mathbf{1 9 6} \mathrm{kJ} \mathrm{mol}^{-1}$
F) The balanced equation I we for ethyl acetate is:
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g})->4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
And from that, the three equations we have are:
$\mathrm{C}+\mathrm{O}_{2}->\mathrm{CO}_{2} \Delta \mathrm{H}_{1}=-394 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}->\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{2}=-286 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+2 \mathrm{O}_{2}->4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}_{3}=-481 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}->4 \mathrm{C}+\mathrm{O}_{2}+4 \mathrm{H}_{2} \quad \Delta \mathrm{H}_{4}-$?
Therefore $\mathrm{H}_{4}=2 * \mathrm{H}_{1}+2 * \mathrm{H}_{2}-\mathrm{H}_{3}=(-4 \cdot 394)+(4 \cdot-286)+481=-\mathbf{2 2 3 9} \mathbf{k J} / \mathrm{mol}$
Answer: $\Delta \mathbf{H}_{\mathbf{c}}\left(\mathbf{C H}_{3} \mathbf{C O O C}_{2} \mathbf{H}_{5}\right)=\mathbf{- 2 2 3 9} \mathrm{kJmol}^{-1}$
B) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})->\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathbf{4} \mathrm{H}_{2} \mathrm{O}$ (l) $\Delta \mathrm{H}_{\mathbf{1}}$ - ?

This could be thought of as the result of two hypothetical reactions, going via the elements:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})->4 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g})+1.5 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathbf{H}_{2}$
followed by $4 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g})+1.5 \mathrm{O}_{2}(\mathrm{~g})->\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+4 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{3}$
$\Delta \mathrm{H}_{2}$ is $-\left[\Delta \mathrm{H}_{\mathrm{f}} \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right.$ (1) $+\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CH}_{3} \mathrm{COOH}$ (1)] as it is the reverse of the formation of the compounds from the element, and $\Delta \mathrm{H}_{3}$ is even more obviously $\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right.$ (1)) $+\Delta \mathrm{H}_{\mathrm{f}}$ $\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)$ as it is the formation of the elements from their compounds. Applying Hess's Law:
$\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}=-\left[\Delta \mathrm{H}_{\mathrm{f}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})\right]+\left[\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})\right)+\Delta \mathrm{H}_{\mathrm{f}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)\right]$
Substituting in appropriate values $\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})\right)=-1367 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})=-874$
$\mathrm{kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})\right)=-2239 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-286 \mathrm{~kJ} / \mathrm{mol}:$
$\Delta \mathbf{H}_{\mathbf{1}}=-[(-1367)+(-874)]+[(-2239)+(-286)]=2241-2525=-284 \mathrm{~kJ} / \mathrm{mol}$
Answer: -284 kJ/mol

