Answer on Question \#59840, Chemistry / General Chemistry

Sodium benzoate, $\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, is used as a preservative in foods. Consider a 50.0-mL sample of $0.250 \mathrm{M} \mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ being titrated by 0.200 M HBr . Calculate the pH of the solution: (A) when no HBr has been added; (B) after the addition of 50.0 $\mathrm{ml}-\mathrm{a}$ of the HBr solution; (C) at the equivalence point; (D) after the addition of 75.00 mL of the HBr solution. The -10 Kb value for the benzoate ion is 1.6×10 to the -10 th power.

Solution:

A) Sodium benzoate is the salt formed by the strong basis of NAON and weak C 6 H 5 COOH acid which in water solution is hydrolyzed on anion:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{HOH} \leftrightarrow \mathrm{NaOH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
The constant of dissociation of benzoic acid is equal to $K=6,3 \cdot 10-5, p K=4.20$ pH of initial solution of sodium benzoate we will calculate on a formula:
$\mathrm{pH}=7+1 / 2 \cdot \mathrm{pK}+1 / 2\left(\lg \mathrm{C}_{\text {salt }}\right)=7+1 / 2 \cdot 4.20+1 / 2 \lg (0,250)=8.980$
B) Titration of benzoate of sodium happens on the equation:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{HBr} \leftrightarrow \mathrm{NaBr}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
Thus, in titrable solution there is a buffer solution - mix of weak, benzoic acid with her salt. pH such buffer mix we will calculate value on a formula:

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\lg \left(C_{\text {acid }} / C_{\text {salt }}\right)
$$

As both concentration pay off in the same volume, in this formula C_acid/C_salt = n_acid/n_salt is possible.

$$
\mathrm{n}_{\text {salt }}=\mathrm{M}_{\text {salt }}^{0} \cdot \mathrm{~V}_{\text {salt }}^{0}-M_{H B r} \cdot V_{H B r} .
$$

Then pH it is possible to calculate on a formula:

$$
\mathrm{pH}=4.20-\lg \left(\frac{\left.V_{H B r^{\circ} \cdot 0.200}^{0.250 V_{\text {salt }}^{0}-0.200 V_{H B r}}\right)}{}\right)
$$

After addition of 50 ml of HBr solution:

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\lg \left(\frac{50 \cdot 0.200}{50 \cdot 0.250-50 \cdot 0.200}\right)=4.20-(-1,10)=5,30
$$

C) In an equivalence point all sodium benzoate has already passed into benzoic acid. We will calculate the volume of the added solution of acid on a formula:

$$
\begin{aligned}
& M_{\text {salt }}^{0} \cdot V_{\text {salt }}^{0}=M_{H B r} \cdot V_{H B r}, \\
& \text { Then } V_{H B r}=M_{\text {salt }}^{0} \cdot V_{\text {salt }}^{0} / M_{H B r}=0,250 \cdot 50 / 0,200=62,5 \mathrm{ml}
\end{aligned}
$$

Solution volume is equal in a point of equivalence $50+62,5=112,5 \mathrm{ml}$ therefore concentration of benzoic acid is equal $0,200 \cdot 62,5 / 112,5=0,111 \mathrm{M}$. We will calculate dissociation degree

$$
\begin{aligned}
& K=\frac{c^{2} \alpha^{2}}{c(1-\alpha)}=\frac{c \alpha^{2}}{(1-\alpha)} \text { Since } \alpha \ll 1 \text {, then }(1-\alpha) \approx 1 . \\
& \text { then } \alpha=\sqrt{\frac{K}{c}}=\sqrt{\frac{6.3 * 10^{-5}}{0,111}}=2.38 * 10^{-2}
\end{aligned}
$$

Then concentration of ions of hydrogen is equal

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.111 \cdot 2.38 * 10^{-2}=2.64 * 10^{-3}} \\
& \mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]=2,58
\end{aligned}
$$

D) After an equivalence point pH solution will be defined by excess concentration of HBr . As Br - strong acid, then $\mathrm{pH}=-\lg [\mathrm{HBr}]$

After addition of 75 ml of HBr solution excess concentration
$[\mathrm{HBr}]=(75-62.5) * 0.2000 /(50+75)=0.02 \mathrm{M}$
Then $\mathrm{pH}=-\lg (0.02)=1.70$

