Answer on Question\#59837 - Chemitry | General Chemistry If we assume that the air - the ideal gas equation holds Mendeleev-Clapeyron:
$p \bullet V=n \bullet R \bullet T$

When (for current conditions):
$\mathrm{V}=\left[\mathrm{m}^{3}\right]=0,0012 \mathrm{~m}^{3}$
$\mathrm{P}=$]Pascal]=101325 Pa
$R=8,314$ [Joule/mole*K]
$\mathrm{T}=\left[{ }^{\circ} \mathrm{K}\right]=651 \mathrm{~K}$
$n=\frac{p V}{R T}=\frac{101325 * 0,0012}{8.314 * 651}=0.0225 \mathrm{~mol}$

Quantity molecules of gas are present under these condition:
$\mathrm{N}=\mathrm{n}^{*} \mathrm{~N}_{\mathrm{a}}$
$\mathrm{N}_{\mathrm{a}}=6.02^{*} 10^{23} \mathrm{~mol}^{-1}$ (Avogadro constant)
$\mathrm{N}=0.0225 \mathrm{~mol}{ }^{*} 6.02^{*} 10^{23}=1.35^{*} 10^{22}$ molecules

