Answer on Question \#59760 - Chemistry - General Chemistry

Task:

Calculate the enthalpy change of the reaction below by two different methods.
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})----->3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a) Use the standard enthalpies of formation:

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	$-104 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_{2}(\mathrm{~g})$	$-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$

b) Use the following mean bond enthalpies quoted in $\mathrm{kJ} \mathrm{mol}^{-1}$.

C-C 348, C-H 412, O=O 496, C=O 804 and O-H 463
c) Account for any difference between the two values.

Solution:

Propane combustion reaction:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})=3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
a) Enthalpy change $\Delta \mathrm{H}$: The net heat energy transferred to a system from the surroundings or from the surroundings to a system at constant pressure.

The standard-state enthalpy of reaction is equal to the sum of the enthalpies of formation of the products minus the sum of the enthalpies of formation of the reactants:
$\Delta H^{o}($ reaction $)=\sum \Delta H_{f}^{o}($ products $)-\sum \Delta H_{f}^{o}($ reac $\tan t s)$.
NOTE: The heat of formation of O 2 is zero because this is the form of the oxygen in its most thermodynamically stable state.

Then,

$$
\Delta H^{o}(\text { reaction })=3 \times \Delta H_{f}^{o}\left(\mathrm{CO}_{2}\right)+4 \times \Delta H_{f}^{o}\left(H_{2} \mathrm{O}\right)-\Delta H_{f}^{o}\left(C_{3} H_{8}\right) .
$$

$\Delta H^{o}($ reaction $)=3 \times(-394)+4 \times(-242)-(-104)=-2046\left(\mathrm{~kJ}^{2} \times \mathrm{mol}^{-1}\right)$.
$\Delta H^{o}($ reaction $)=-2046 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.

Answer (a): $\Delta H^{o}($ reaction $)(a)=-2046 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.
b) Bond Energy: The energy required to break a bond. Bond energy is always a positive number because the breaking of a bond requires an input of energy (endothermic). When a bond is formed, the amount of energy equal to the bond energy is released.
$\Delta H^{o}($ reaction $)=\sum$ Bond energies of bonds broken $-\sum$ Bond energies of bonds formed.

$$
\begin{aligned}
& C_{3} \mathrm{H}_{8}=2 \times(\mathrm{C}-\mathrm{C})+8 \times(\mathrm{C}-\mathrm{H}) ; \\
& \mathrm{O}_{2}=1 \times(\mathrm{O}=\mathrm{O}) ; \\
& \mathrm{CO}_{2}=2 \times(\mathrm{C}=\mathrm{O}) ; \\
& \mathrm{H}_{2} \mathrm{O}=2 \times(\mathrm{O}-\mathrm{H})
\end{aligned}
$$

Then,
$\Delta H^{o}($ reaction $)=E\left(C_{3} H_{8}\right)+5 \times E\left(O_{2}\right)-\left(3 \times E\left(\mathrm{CO}_{2}\right)+4 \times E\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$.
$\Delta H^{o}($ reaction $)=2 \times(C-C)+8 \times(C-H)+5 \times 1 \times(O=O)-(3 \times 2 \times(C=O)+4 \times 2 \times(O-H))$.
$\Delta H^{o}($ reaction $)=2 \times 348+8 \times 412+5 \times 496-(6 \times 804+8 \times 463)=-2056\left(k J \times\right.$ mol $\left.^{-1}\right)$.
$\Delta H^{o}($ reaction $)=-2056 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.
Answer (b): $\Delta H^{o}($ reaction $)(b)=-2056 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.
c) Account for any difference between the two values:

$$
\begin{aligned}
& \Delta=\Delta H^{o}(\text { reaction })(a)-\Delta H^{o}(\text { reaction })(b)=-2046 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}-\left(-2056{\left.\mathrm{~kJ} \times \mathrm{mol}^{-1}\right)=10 \mathrm{~kJ}^{2} \times \mathrm{mol}^{-1} .}_{\Delta}^{\Delta}=10{\mathrm{~kJ} \times \mathrm{mol}^{-1} .}^{.}\right.
\end{aligned}
$$

Answer (c): $\Delta=10 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.

Answer:

a) $\Delta H^{o}($ reaction $)(a)=-2046 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.
b) $\Delta H^{o}($ reaction $)(b)=-2056 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.
c) $\Delta=10 \mathrm{~kJ} \times \mathrm{mol}^{-1}$.

