Answer on the question \#59540, Chemistry / General Chemistry

Question:

Find the amount of carbon dioxide released into the air when 32.5 g . of octane is completely combusted with oxygen also What is the volume of this carbon dioxide gas at STP?

Solution:

The reaction of combustion of octane is:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Then, moles of carbon dioxide and octane relate as:

$$
n\left(C_{8} H_{18}\right)=\frac{n\left(\mathrm{CO}_{2}\right)}{8}
$$

The number of the moles of octane can be calculated through molar mass $M\left(C_{8} H_{18}\right)$:

$$
n\left(C_{8} H_{18}\right)=\frac{m\left(C_{8} H_{18}\right)}{M\left(C_{8} H_{18}\right)}=\frac{32.5(\mathrm{~g})}{114.23(\mathrm{~g} / \mathrm{mol})}=0.285 \mathrm{~mol}
$$

Then, amount of carbon dioxide is:

$$
n\left(\mathrm{CO}_{2}\right)=0.285 \cdot 8=2.276 \mathrm{~mol}
$$

And, finally, the volume of carbon dioxide (number of the moles times molar volume V_{M}):

$$
V\left(\mathrm{CO}_{2}\right)=n\left(\mathrm{CO}_{2}\right) \cdot V_{M}=2.276(\mathrm{~mol}) \cdot 22.4(\mathrm{~L} / \mathrm{mol})=51 \mathrm{~L}
$$

Answer: $2.28 \mathrm{~mol}, 51 \mathrm{~L}$

