Answer question \#59504, Chemistry / Physical Chemistry

Question:

A 0.1888 g sample of hydrocarbon produces 0.6266 g of carbon dioxide and 0.1602 water. in a combustion analysis its molecular mass is $106 \mathrm{~g} / \mathrm{mol}$. determine its mass percent composition

Solution:

Reaction equation is:

$$
2 \mathrm{C}_{x} \mathrm{H}_{2 x+2}+(3 x+1) \mathrm{O}_{2} \rightarrow 2 x \mathrm{CO}_{2}+2(x+1) \mathrm{H}_{2} \mathrm{O}
$$

The number of the moles of carbon dioxide is:

$$
n\left(\mathrm{CO}_{2}\right)=\frac{0.6266(\mathrm{~g})}{44\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.0142 \mathrm{~mol}
$$

Mass of carbon is:

$$
m(C)=n(C) * 12\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)=n\left(\mathrm{CO}_{2}\right) * 12\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)=0.171 \mathrm{~g}
$$

The number of the moles of water and hydrogen are:

$$
\begin{gathered}
n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{m\left(\mathrm{H}_{2} \mathrm{O}\right)}{18\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=\frac{0.1602(\mathrm{~g})}{18\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.0089 \mathrm{~mol} \\
n(\mathrm{H})=2 n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.0178 \mathrm{~mol} \\
m(\mathrm{H})=n(\mathrm{H}) * 1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)=0.0178 \mathrm{~g}
\end{gathered}
$$

Finally, mass percentages of hydrogen and carbon are:

$$
\begin{aligned}
& \omega(C)=\frac{m(C)}{m(\text { hydrocarbon })} * 100 \%=90.5 \% \\
& \omega(H)=\frac{m(H)}{m(\text { hydrocarbon })} * 100 \%=9.4 \%
\end{aligned}
$$

Answer: 90.5\% of carbon and 9.4\% of hydrogen.

