Two oxides of a metal have 72.4% and 70% of metal respectively. If formula of second oxide is $\mathrm{M}_{2} \mathrm{O}_{3}$, find that of first

Solution.

For Oxygen we have $w(\%)=100-70=30 ; \operatorname{Ar}(\mathrm{O})=16$;
Due to the law of proportion - [\%/Ar]
$70 / \mathrm{x}: 30 / 16=2: 3$,
$70 / \mathrm{x}: 1.875=2: 3$, where $\mathrm{x}=56(\mathrm{Fe})$
Then, if $\mathrm{w}(\mathrm{O})=100-72.4=27.6(\%)$
$72.4 / 56: 27.6 / 16=1.2928: 1.725=1: 1.334=3: 4$
Answer : $\mathrm{M}_{3} \mathrm{O}_{4}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$.

