Answer on Question \#59406 - Chemistry - General Chemistry

Task (1): What is the mass of 0.452 moles of methane, CH_{4} ?

Solution (1):

The formula mass methane is the sum of the atomic masses for each atom in the compound.
Then,

$$
1(C)+4(H)=1 \times 12+4 \times 1=16 \frac{g}{\text { mole }} C H_{4} .
$$

One mole of methane $\left(\mathrm{CH}_{4}\right)$ has a mass of 16.0 g .
Let us find the mass that is 0.452 moles of methane:

$$
\begin{aligned}
& 0.452 \mathrm{~mole} \times\left[\frac{16.0 \mathrm{~g} \mathrm{CH}_{4}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right]=7.232 \mathrm{~g} \mathrm{CH}_{4} . \\
& m\left(\mathrm{CH}_{4}\right)=7.232 \mathrm{~g}
\end{aligned}
$$

Answer (1): $m\left(\mathrm{CH}_{4}\right)=7.232 \mathrm{~g}$ are in 0.452 moles of methane $\left(\mathrm{CH}_{4}\right)$.

Task (2): What is the mass of 1.55 moles of $\mathrm{N}_{2} \mathrm{O}$?

Solution (2):

The formula mass $\mathrm{N}_{2} \mathrm{O}$ is the sum of the atomic masses for each atom in the compound.
Then,

$$
2(N)+(O)=2 \times 14+1 \times 16=44 \frac{g}{\text { mole }} N_{2} O
$$

One mole of $\mathrm{N}_{2} \mathrm{O}$ has a mass of 44.0 g .
Let us find the mass that is 1.55 moles of $\mathrm{N}_{2} \mathrm{O}$:

1.55 mole $\times\left[\frac{44.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}}{1 \text { mole } \mathrm{N}_{2} \mathrm{O}}\right]=68.2 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}$.
 $m\left(\mathrm{~N}_{2} \mathrm{O}\right)=68.2 \mathrm{~g}$

Answer (2): $\mathrm{m}\left(\mathrm{N}_{2} \mathrm{O}\right)=68.2 \mathrm{~g}$ are in 1.55 moles of $\mathrm{N}_{2} \mathrm{O}$.

Task (3): What is the mass of 3.28 moles of dinitrogen tetroxide?

Solution (3):

The formula mass dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ is the sum of the atomic masses for each atom in the compound.

Then,

$$
2(N)+4(O)=2 \times 14+4 \times 16=92 \frac{g}{\text { mole }} N_{2} O_{4}
$$

One mole of N 2 O 4 has a mass of 92.0 g .
Let us find the mass that is 3.28 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$:
3.28 mole $\times\left[\frac{92.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}{1 \text { mole } \mathrm{N}_{2} \mathrm{O}_{4}}\right]=301.76 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$.
$m\left(N_{2} \mathrm{O}_{4}\right)=301.76 \mathrm{~g}$

Answer (3): $m\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)=301.76 \mathrm{~g}$ are in 3.28 moles of dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$.

Task (4): What is the mass of 1.95 moles of potassium phosphate?

Solution (4):

The formula mass potassium phosphate $\left(K_{3} \mathrm{PO}_{4}\right)$ is the sum of the atomic masses for each atom in the compound.

Then,

$$
3(K)+1(P)+4(O)=3 \times 39+1 \times 31+4 \times 16=212 \frac{g}{m o l e} K_{3} P O_{4}
$$

One mole of $\mathrm{K}_{3} \mathrm{PO}_{4}$ has a mass of 212.0 g .
Let us find the mass that is 1.95 moles of КЗРО4:
$1.95 \mathrm{~mole} \times\left[\frac{212.0 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{3} \mathrm{PO}_{4}}{\text { 1mole } \mathrm{K}_{3} P O_{4}}\right]=413.4 g \mathrm{~K}_{3} \mathrm{PO}_{4}$.
$m\left(K_{3} P O_{4}\right)=413.4 g$

Answer (4): $m\left(K_{3} \mathrm{PO}_{4}\right)=413.4 \mathrm{~g}$ are in 1.95 moles of potassium phosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)$.

Task (5): What is the mass of 10.5 moles of hydrogen, H_{2} ?

Solution (5):

The formula mass hydrogen $\left(\mathrm{H}_{2}\right)$ is the sum of the atomic masses for each atom in the compound.

Then,

$$
2(H)=2 \times 1=2 \frac{g}{\text { mole }} H_{2} .
$$

One mole of H_{2} has a mass of 2 g .
Let us find the mass that is 10.5 moles of H_{2} :
$10.5 \mathrm{~mole} \times\left[\frac{2.0 \mathrm{~g} \mathrm{H}}{2} \mathrm{~mole} \mathrm{H}_{2}\right]=21.0 \mathrm{~g} \mathrm{H}_{2}$.
$m\left(H_{2}\right)=21.0 g$

Answer (4): $m\left(\mathrm{H}_{2}\right)=21.0 \mathrm{~g}$ are in 1.05 moles of hydrogen $(\mathrm{H} 2)$.

