If 9.65 moles of an ideal gas has a pressure of 4.77 atm, and a volume of 43.85 L , what is the temperature of the sample?

Solution:

The ideal gas law is:

$$
p V=n R T
$$

where P is the absolute pressure of the gas, V is the volume of the gas, n is the amount of substance of gas (measured in moles), T is the absolute temperature of the gas and R is the ideal, or universal, gas constant. From this equation:

$$
T=\frac{p V}{n R}
$$

$\mathrm{p}(\mathrm{Pa})=4.77^{*} 101325=483320.25$
$V\left(\mathrm{~m}^{3}\right)=43.85 / 1000=4.385^{*} 10^{-2}$
$T(K)=\left(483320.25 * 4.385 * 10^{-2}\right) /(9.65 * 8.314)=264.16$

Answer: 264.16 K

