Solid calcium hydroxide, $\mathrm{Ca}(\mathrm{OH}) 2$, is dissolved in water until the pH of the solution is 10.23 . What is the concentration of calcium ion [Ca2+]?

Solution:

In water $\mathrm{Ca}(\mathrm{OH})_{2}$ dissociates according to the equation:
$\mathrm{Ca}(\mathrm{OH})_{2} \leftrightarrow 2 \mathrm{OH}^{-}+\mathrm{Ca}^{2+}$
We assume that the pH of the water has been 7, after dissolved $\mathrm{Ca}(\mathrm{OH})_{2}$ in water the pH increased to 10.23. From this it follows that the concentration of ion OH^{-}increase by $10^{-3.23} \mathrm{~mol} / \mathrm{L}$ or $5.89 \cdot 10^{-4} \mathrm{~mol} / \mathrm{L}$
$\left(\Delta \mathrm{pH}=10.23-7=3.23\right.$, so $\Delta \mathrm{pH}=\Delta \mathrm{pOH}=3.23$. Due to the fact that $\mathrm{pOH}=-\mathrm{lg}\left[\mathrm{OH}^{-}\right]$, than $\left.\left[\mathrm{OH}^{-}\right]=10^{-3.23} \mathrm{M}\right)$.
Because, during the dissociates of $\mathrm{Ca}(\mathrm{OH})_{2}$ the ions $\left[\mathrm{Ca}^{2+}\right.$] form twice less than the ions [$\left.\mathrm{OH}^{-}\right]$, the concentration of $\left[\mathrm{Ca}^{2+}\right]$ is: $5.89 \cdot 10^{-4} / 2=2.945 \cdot 10^{-4} \mathrm{~mol} / \mathrm{L}$.
Answer: $\left[\mathrm{Ca}^{2+}\right]=2.945 \cdot 10^{-4} \mathrm{~mol} / \mathrm{L}$.

