Sample: Discrete Mathematics - Statements and Truth Tables

• Use a truth table to determine whether the following statement form is a tautology, a contradiction or neither.

$$((p \lor q) \to q) \leftrightarrow (p \to q).$$

Solution.

a) Tautology.

р	q	рVq	p ightarrow q	$(p \lor q) \rightarrow q$	$((p \lor q) \rightarrow q) \leftrightarrow (p \rightarrow q)$
0	0	0	1	1	1
0	1	1	1	1	1
1	0	1	0	0	1
1	1	1	1	1	1

b)

I) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Consider, that $p \rightarrow r$ = false. In this way p = 1 and r = 0.

So, two cases for q. If q = 0, then $p \rightarrow q$ is false. If q = 1, then $q \rightarrow r$ is false.

So, whatever q is, at least one of $p \rightarrow q$, $q \rightarrow r$ is false.

II) We need to show that $p \rightarrow r$ is true if $p \rightarrow q$ and $q \rightarrow r$ are true. Consider, that $p \rightarrow q$ and $q \rightarrow R$ are true, but $p \rightarrow q$ is false. But, from I we know, that if $p \rightarrow r$ is false then at least one of $p \rightarrow q$, $q \rightarrow r$ is false. So, our assumption is wrong and by contradiction argument is valid.

• Consider the following argument.

If I get a wage rise, then I will buy a car.

If I sell my motorcycle, then I will buy a car.

Therefore, if I get a wage rise and I sell my motorcycle, then I will buy a car.

- a. Use symbols to write the logical form of this argument.
- b. If the argument is valid, prove it is valid; if not, justify why not.

Solution.

- a. if A, then C
 - if B, then C therefore, if A and B, then C
- b. Valid. Consider that premises are true, but conclusion is false(argument is invalid). So, if A is true then C is true. If B is true then C is true. But conclusion says that A is true and B is true and C is false. This is impossible, cause if A or B is true C also is true.
 So, assumption is wrong and by contradioction argument is valid.
- Prove the following statement is true.
 For all integers a and b, if a is odd and b is odd, then a b is even.

Solution.

Consider that $a = 2^{*}x+1$, $b = 2^{*}y+1 - both odd$. Then $a-b = 2^{*}x+1 - (2^{*}y+1) = 2^{*}x-2^{*}y+1-1 = 2^{*}(x-y) - even$.

SUBMIT

• If $x \in R$, either prove that the following statement is true, or else give a counter-example to show that it is false.

$$[x][x] = [x - 1][x + 1].$$

Solution.

It doesnt work for integers. Ex. x = 4:

[x] * [x] = [4] * [4] = 4 * 4 = 16. [x - 1] * [x + 1] = [4-1] * [4+1] = [3] * [5] = 3*5 = 1516 = 15, so this statement is false.