Sample: Discrete Mathematics - Statements and Truth Tables

- Use a truth table to determine whether the following statement form is a tautology, a contradiction or neither.

$$
((p \vee q) \rightarrow q) \leftrightarrow(p \rightarrow q)
$$

Solution.

a) Tautology.

p	q	$p \vee q$	$p \rightarrow q$	$(p \vee q) \rightarrow q$	$((p \vee q) \rightarrow q) \leftrightarrow(p \rightarrow q)$
0	0	0	1	1	1
0	1	1	1	1	1
1	0	1	0	0	1
1	1	1	1	1	1

b)
I) $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$

Consider, that $p \rightarrow r=$ false. In this way $p=1$ and $r=0$.
So, two cases for q. If $q=0$, then $p \rightarrow q$ is false. If $q=1$, then $q \rightarrow r$ is false.
So, whatever q is, at least one of $p \rightarrow q, q \rightarrow r$ is false.
II) We need to show that $p \rightarrow r$ is true if $p \rightarrow q$ and $q \rightarrow r$ are true. Consider, that $p \rightarrow q$ and $q \rightarrow R$ are true, but $p \rightarrow q$ is false. But, from I we know, that if $p \rightarrow r$ is false then at least one of $p \rightarrow q$, $q \rightarrow r$ is false. So, our assumption is wrong and by contradiction argument is valid.

- Consider the following argument.

If I get a wage rise, then I will buy a car.
If I sell my motorcycle, then I will buy a car.
Therefore, if I get a wage rise and I sell my motorcycle, then I will buy a car.
a. Use symbols to write the logical form of this argument.
b. If the argument is valid, prove it is valid; if not, justify why not.

Solution.

a. if A, then C
if B, then C
therefore, if A and B, then C
b. Valid. Consider that premises are true, but conclusion is false(argument is invalid). So, if A is true then C is true. If B is true then C is true. But conclusion says that A is true and B is true and C is false. This is impossible, cause if A or B is true C also is true.
So, assumption is wrong and by contradioction argument is valid.

- Prove the following statement is true.

For all integers a and b, if a is odd and b is odd, then $a-b$ is even.

Solution.

Consider that $\mathrm{a}=2^{*} \mathrm{x}+1, \mathrm{~b}=2^{*} \mathrm{y}+1$ - both odd.
Then $a-b=2^{*} x+1-\left(2^{*} y+1\right)=2^{*} x-2 * y+1-1=2^{*}(x-y)-$ even.

- If $x \in R$, either prove that the following statement is true, or else give a counter-example to show that it is false.

$$
\lfloor x\rfloor\lceil x\rceil=\lfloor x-1\rfloor\lceil x+1\rceil .
$$

Solution.

It doesnt work for integers. Ex. $x=4$:
$\lfloor x]^{*}[x]=\lfloor 4]^{*}\lceil 4\rceil=4 * 4=16 .[x-1\rfloor *\lceil x+1\rceil=[4-1\rceil *[4+1]=\lceil 3\rceil *[5]=3 * 5=15$
$16=15$, so this statement is false.

