Sample: Abstract Algebra - Rings

Task 1. Let R be a commutative ring with unity and let $a, b \in R$. Prove that if ab has a multiplicative inverse in R, then both a and b have multiplicative inverses.

Proof. Let c be the multiplicative inverse of $a b$, so $c a b=1$. Then

$$
(c a) b=1,
$$

and so

$$
c a=b^{-1}
$$

is the inverse of b.
Similarly, since R is commutative, $a b=b a$, and so

$$
c b a=c a b=1 .
$$

Thus

$$
(c b) a=1,
$$

and therefore

$$
c b=a^{-1}
$$

is the inverse of a.

Task 2. Let $R=2 \mathbb{Z}$ be the ring of even integers. Show that R contains a maximal ideal M so that R / M is not a field.

Proof. Let $M=4 \mathbb{Z} \subset R$ be the ring of integers which are multiples of 4 . We claim that R / M is not a field.

We will prove that R / M has zero divisors. Indeed, let [2] $=2+M$ be the class of 2 in R / M, and $[0]=M$ be the class of 0 in R / M. Then

$$
[2] \cdot[2]=(2+M)(2+M)=4+M=M=[0]
$$

since $4 \in M$.
Thus [2] is a zero divisor in R / M, and so R / M is not a field.

Task 3. Prove that if R is a commutative ring with unity and $f=a_{n} x^{n}+\cdots+a_{0}$ is a zero divisor in $R[x]$, then there exists a nonzero b in R such that

$$
b a_{n}=b^{2} a_{n-1}=b^{3} a_{n-2}=\cdots=0
$$

Proof. The assumption that f is a zero divisor in $R[x]$ means that there exists a polynomial $g=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}$ such that $b_{m} \neq 0$ and

$$
g f=0
$$

in $R[x]$.
We claim that the coefficient b_{m} at x_{m} has the required property:

$$
b_{m} a_{n}=b_{m}^{2} a_{n-1}=b_{m}^{3} a_{n-2}=\cdots=0 .
$$

Indeed, $f g=0$ means that all the coefficients of $f g$ are zero. Let us write exact formulas for $f g$:

$$
\begin{gathered}
g f=\left(b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}\right) \cdot\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right)= \\
\left(b_{m} a_{n}\right) x^{n+m}+ \\
\left(b_{m} a_{n-1}+b_{m-1} a_{n}\right) x^{n+m-1}+
\end{gathered}
$$

$$
\left(b_{m} a_{n-2}+b_{m-1} a_{n-1}+b_{m-2} a_{n}\right) x^{n+m-2}+\cdots
$$

Thus

$$
\begin{gathered}
b_{m} a_{n}=0 \\
b_{m} a_{n-1}+b_{m-1} a_{n}=0 \\
b_{m} a_{n-2}+b_{m-1} a_{n-1}+b_{m-2} a_{n}=0
\end{gathered}
$$

and so on.
The first equation is what we need: $b_{m} a_{n}=0$.
Multiplying the second equation by b_{m} we get:

$$
\begin{gathered}
0=b_{m}\left(b_{m} a_{n-1}+b_{m-1} a_{n}\right)=b_{m}^{2} a_{n-1}+b_{m} b_{m-1} a_{n}=b_{m}^{2} a_{n-1}+b_{m-1}\left(b_{m} a_{n}\right)= \\
=b_{m}^{2} a_{n-1}+b_{m-1} \cdot 0=b_{m}^{2} a_{n-1}
\end{gathered}
$$

Thus

$$
b_{m}^{2} a_{n-1}=0
$$

Again, multiplying the third equation by b_{m}^{2} we obtain

$$
\begin{gathered}
b_{m}^{2}\left(b_{m} a_{n-2}+b_{m-1} a_{n-1}+b_{m-2} a_{n}\right)=b_{m}^{3} a_{n-2}+b_{m-1}\left(b_{m}^{2} a_{n-1}\right)+b_{m-2} b_{m}\left(b_{m} a_{n}\right)= \\
b_{m}^{3} a_{n-2}+b_{m-1} \cdot 0+b_{m-2} b_{m} \cdot 0=b_{m}^{3} a_{n-2}
\end{gathered}
$$

Thus

$$
b_{m}^{3} a_{n-2}=0
$$

By similar arguments multiplying coefficent at x^{m+n-k} by b_{m}^{k} we will get that

$$
b_{m}^{k} a_{n-k+1}=0
$$

for all k.

