Sample: Real Analysis - Real Analysis Task

Problem 1. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers with the property

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=L \in[-\infty,+\infty] .
$$

Prove that the sequences $a_{n}=\frac{x_{n}+y_{n}}{2}$ and $b_{n}=\sqrt{x_{n} y_{n}}$ are convergent to L. (For $\left\{b_{n}\right\}$, it is assumed that $x_{n}, y_{n} \geq 0$, of course.)

Solution. Suppose $\varepsilon>0$.
Since we are given $\lim _{n \rightarrow \infty} x_{n}=L$, then by definition of the limit of a sequence there exists some $N_{1} \in$ \mathbb{N} such that if $n>N_{1}$ then $\left|x_{n}-L\right|<\frac{\varepsilon}{2}$.

Similarly, since $\lim _{n \rightarrow \infty} y_{n}=L$, there exists some $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|y_{n}-L\right|<\frac{\varepsilon}{2}$.
Let us now choose $N=\max \left\{N_{1}, N_{2}\right\}$. For $n>N$, both of the above inequalities hold. We can therefore add them together:

$$
\left|x_{n}-L\right|+\left|y_{n}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

for every $n>N$.
Next, recalling the triangle inequality, we have

$$
\left|\left(x_{n}+y_{n}\right)-(L+L)\right| \leq\left|x_{n}-L\right|+\left|y_{n}-L\right|
$$

and thus

$$
\left|\left(x_{n}+y_{n}\right)-2 L\right|<\varepsilon .
$$

We see that $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=2 L$.
Finally, recall the following property of limits of real sequences:

$$
\lim _{n \rightarrow \infty} c x_{n}=c \lim _{n \rightarrow \infty} x_{n} \quad \text { for every } c \in \mathbb{R}
$$

By applying this property, we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(x_{n}+y_{n}\right)=\frac{1}{2} \lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\frac{1}{2} * 2 L=L,
$$

and we have completed the first part of the proof.
Let us now look at sequence b_{n}.
This part will be slightly more complicated, since we will need to use an additional result: every convergent sequence is bounded. Let us prove this statement.

We will use $\left\{x_{n}\right\}$ as an example. Recall that we have $\lim _{n \rightarrow \infty} x_{n}=L \in \mathbb{R}$, which means that $\left\{x_{n}\right\}$ is a convergent sequence. According to the definition given above, there exists some $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|x_{n}-L\right|<\varepsilon$, or $L-\varepsilon<x_{n}<L+\varepsilon$.

The set $\left\{x_{n}: 1 \leq n \leq N_{1}\right\}$ is finite and therefore bounded: there exist $m, M \in \mathbb{R}$ such that for all $n \leq N_{1}$, we have $m<x_{n}<M$.

Now take $m^{\prime}=\min \{L-\varepsilon, m\}$ and $M^{\prime}=\max \{L+\varepsilon, M\}$. We now have that for all $n \in \mathbb{N}, m^{\prime}<$ $x_{n}<M^{\prime}$, so the sequence $\left\{x_{n}\right\}$ is bounded.

We can now proceed to the final part of our proof.
Applying the result above to both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, we can state that there exist $m^{\prime}, m^{\prime \prime}, M^{\prime}, M^{\prime \prime} \in \mathbb{R}$ such that for all $n \in \mathbb{N}, m^{\prime}<x_{n}<M^{\prime}$ and $m^{\prime \prime}<y_{n}<M^{\prime \prime}$. We now choose $M=$ $\max \left\{1,|L|,\left|m^{\prime}\right|,\left|m^{\prime \prime}\right|,\left|M^{\prime}\right|,\left|M^{\prime \prime}\right|\right\}$.

We can repeat our definition of convergence for x_{n} and y_{n} :

- there exists some $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|x_{n}-L\right|<\frac{\varepsilon}{2 M}$;
- there exists some $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|y_{n}-L\right|<\frac{\varepsilon}{2 M}$.

Just like for a_{n}, choose $N=\max \left\{N_{1}, N_{2}\right\}$, and both inequalities hold for $n>N$.
Now let us evaluate $\left|x_{n} y_{n}-L^{2}\right|$.

$$
\left|x_{n} y_{n}-L^{2}\right|=\left|x_{n} y_{n}-x_{n} L+x_{n} L-L^{2}\right|=\left|x_{n}\left(y_{n}-L\right)+L\left(x_{n}-L\right)\right|
$$

Apply the triangle inequality:

$$
\left|x_{n}\left(y_{n}-L\right)+L\left(x_{n}-L\right)\right| \leq\left|x_{n}\right| *\left|y_{n}-L\right|+|L| *\left|x_{n}-L\right| \leq M \frac{\varepsilon}{2 M}+|L| \frac{\varepsilon}{2 M}
$$

But $|L| \leq M$ by definition of M, so

$$
M \frac{\varepsilon}{2 M}+|L| \frac{\varepsilon}{2 M} \leq 2 M \frac{\varepsilon}{2 M}=\varepsilon .
$$

Combining the first and last steps, we have

$$
\left|x_{n} y_{n}-L^{2}\right| \leq \varepsilon,
$$

which means that $\lim _{n \rightarrow \infty} x_{n} y_{n}=L^{2}$.
Suppose that $L \neq 0$. As we have just shown, there exists an $N \in \mathbb{N}$ such that for every $n>N$, $\left|x_{n} y_{n}-L^{2}\right| \leq \varepsilon$, which can be modified to $\left|x_{n} y_{n}-L^{2}\right| \leq \varepsilon|L|$.

Now consider

$$
\left|\sqrt{x_{n} y_{n}}-L\right|=\left|\sqrt{x_{n} y_{n}}-L\right| \frac{\left|\sqrt{x_{n} y_{n}}+L\right|}{\left|\sqrt{x_{n} y_{n}}+L\right|}=\frac{\left|x_{n} y_{n}-L^{2}\right|}{\left|\sqrt{x_{n} y_{n}}+L\right|} \leq \frac{\left|x_{n} y_{n}-L^{2}\right|}{|L|}<\frac{\varepsilon|L|}{|L|}=\varepsilon .
$$

Thus, if $L \neq 0$, we have $\lim _{n \rightarrow \infty} \sqrt{x_{n} y_{n}}=L$.
Now suppose that $L=0$. Since $\lim _{n \rightarrow \infty} x_{n} y_{n}=L^{2}=0$, there exists some $N \in \mathbb{N}$ such that for every $n>$ $N, x_{n} y_{n}=\left|x_{n} y_{n}-0\right|<\varepsilon^{2}$ (note that here we have used the condition that $x_{n}, y_{n} \geq 0$). Then $\sqrt{x_{n} y_{n}}<$ $\sqrt{\varepsilon^{2}}=\varepsilon$, and $\left|\sqrt{x_{n} y_{n}}-L\right|=\left|\sqrt{x_{n} y_{n}}\right|<\varepsilon$, and in this case we also have $\lim _{n \rightarrow \infty} \sqrt{x_{n} y_{n}}=L$.

The proof is complete.

Problem 2. Find the radius of convergence of the following power-series

$$
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}} z^{n}
$$

specify the disk of convergence, and study the convergence at the points z on the boundary of that disk situated on the real line, respectively on the y-axis.
(ATTN: We are taking about four values of z here.)
Solution. To find the radius of convergence, we will first need to find the limit superior of the sequence $\left\{\left(c_{n}\right)^{\frac{1}{n}}\right\}$, where (in our case) $c_{n}=\frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}$. To do this, note that $c_{2 k}=\frac{1+1}{\sqrt{2 k} 2^{2 k}}=\frac{2}{\sqrt{2 k} 2^{2 k}}>0$, whereas $c_{2 k+1}=\frac{1-1}{\sqrt{2 k+1} 2^{2 k+1}}=0$. Thus,

$$
\lim _{n \rightarrow \infty} \sup \left(c_{n}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \sup \left(\frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{2}{\sqrt{n} 2^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{2^{\frac{1}{\mathrm{n}}}}{2(\sqrt{n})^{\frac{1}{n}}} .
$$

Now note that $\lim _{n \rightarrow \infty} n^{\frac{1}{2 n}}=\lim _{n \rightarrow \infty} e^{\frac{1}{2 n} \ln n}=1$ and $\lim _{n \rightarrow \infty} 2^{\frac{1}{n}}=2^{0}=1$. Therefore,

$$
\lim _{n \rightarrow \infty} \sup \left(c_{n}\right)^{\frac{1}{n}}=\frac{1}{2 * 1}=\frac{1}{2} .
$$

Applying the formula for radius of convergence, we have

$$
R=\frac{1}{\lim _{n \rightarrow \infty} \sup \left(c_{n}\right)^{\frac{1}{n}}}=2
$$

The disk of convergence is $\Delta_{R}=\{z:|z|<2\}$.
The last part of the problem is to study the convergence at the points z on the boundary of that disk situated on the real line, respectively on the y-axis. These points are $(2,0),(0,2),(-2,0),(0,-2)$.

- $z_{1}=2$

$$
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}} 2^{n}=\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n}}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}+\sum_{n=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\sqrt{n}}
$$

Note that the series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverges, since we know that power series $\sum_{n=0}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$ and in our case $p=\frac{1}{2}<1$.
However, $\sum_{n=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\sqrt{n}}$ converges, which can be shown by the alternating series test, since the sequence $\left\{\frac{1}{\sqrt{n}}\right\}$ decreases monotonically and goes to zero in the limit as $n \rightarrow \infty$.
Now recall that the sum of ta convergent and divergent series diverges. Thus, $\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}} 2^{n}$ diverges.

- $z_{2}=2 i$

Recall that $i^{4 k+1}=i, i^{4 k+2}=-1, i^{4 k+3}=-i, i^{4 k}=1$ for every $k \in \mathbb{N}$. Therefore,

$$
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}(2 i)^{n}=
$$

$$
=\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}+1}}{\sqrt{4 n+1}} i-\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}+2}}{\sqrt{4 n+2}}-\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}+3}}{\sqrt{4 n+3}} i
$$

$$
+\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}}}{\sqrt{4 n}}=i \sum_{n=0}^{\infty}\left(\frac{1+(-1)^{4 \mathrm{n}+1}}{\sqrt{4 n+1}}-\frac{1+(-1)^{4 \mathrm{n}+3}}{\sqrt{4 n+3}}\right)
$$

$$
+\sum_{n=0}^{\infty}\left(\frac{1+(-1)^{4 \mathrm{n}}}{\sqrt{4 n}}-\frac{1+(-1)^{4 \mathrm{n}+2}}{\sqrt{4 n+2}}\right)
$$

Now note that $(-1)^{4 \mathrm{n}}=(-1)^{4 \mathrm{n}+2}=1$ and $(-1)^{4 \mathrm{n}+1}=(-1)^{4 \mathrm{n}+3}=-1$. Thus, swe can further simplify this expression as follows:

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}(2 i)^{n}=i \sum_{n=0}^{\infty}\left(\frac{1-1}{\sqrt{4 n+1}}-\frac{1-1}{\sqrt{4 n+3}}\right)+\sum_{n=0}^{\infty}\left(\frac{1+1}{\sqrt{4 n}}-\frac{1+1}{\sqrt{4 n+2}}\right) \\
=\sum_{n=0}^{\infty}\left(\frac{2}{\sqrt{4 n}}-\frac{2}{\sqrt{4 n+2}}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{2}{\sqrt{4 n+2}}\right)
\end{gathered}
$$

Let us now investigate convergence of this series. We will transform the summand:

$$
\begin{aligned}
\frac{1}{\sqrt{n}}-\frac{2}{\sqrt{4 n+2}} & =\frac{\sqrt{4 n+2}-2 \sqrt{n}}{\sqrt{n} \sqrt{4 n+2}}=\frac{4 n+2-4 \mathrm{n}}{\sqrt{n} \sqrt{4 n+2}(\sqrt{4 n+2}+2 \sqrt{n})}= \\
& =\frac{2}{\sqrt{n} \sqrt{4 n+2}(\sqrt{4 n+2}+2 \sqrt{n})}
\end{aligned}
$$

We will use the comparison convergence test. Since $\sqrt{4 n+2}>\sqrt{4 n}$, we have

$$
\begin{gathered}
\frac{2}{\sqrt{n} \sqrt{4 n+2}(\sqrt{4 n+2}+2 \sqrt{n})} \leq \frac{2}{\sqrt{n} \sqrt{4 n}(\sqrt{4 n}+2 \sqrt{n})}=\frac{2}{2 n(2 \sqrt{n}+2 \sqrt{n})}=\frac{1}{3 n \sqrt{n}}= \\
=\frac{1}{3 n^{\frac{3}{2}}}
\end{gathered}
$$

Recall again that the power series $\sum_{n=0}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$; here $p=\frac{3}{2}>1$, so our series $\sum_{n=0}^{\infty} \frac{1}{3 n^{\frac{3}{2}}}$ converges.
Finally, by applying the comparison convergence test, we see that the initial series $\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}(2 i)^{n}$ also converges.

- $z_{3}=-2$

$$
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}(-2)^{n}=\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n}}(-1)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\sqrt{n}}+\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}
$$

This expression is equal to the one we obtained for $\sum_{n=0}^{\infty} \frac{1+(-1)^{n}}{\sqrt{n} 2^{n}} 2^{n}$, and we have already shown that this series diverges above.

- $z_{4}=-2 i$

$$
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n} 2^{n}}(-2 i)^{n}=\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n}}(-i)^{n}
$$

We will use the same approach as for $z_{2}=2 i$.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1+(-1)^{\mathrm{n}}}{\sqrt{n}} & (-i)^{n}= \\
& =-\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}+1}}{\sqrt{4 n+1}} i-\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}+2}}{\sqrt{4 n+2}}+\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}+3}}{\sqrt{4 n+3}} i \\
& +\sum_{n=0}^{\infty} \frac{1+(-1)^{4 \mathrm{n}}}{\sqrt{4 n}}=
\end{aligned}
$$

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=+\infty$. Prove that such a function attains its minimum.

Solution. Let us first consider what we mean by $\lim _{x \rightarrow+\infty} f(x)=+\infty$: for every $M>0$, there exists some $n_{1}>$ 0 such that for all $x>n_{1}$, we have $f(x)>M$.

Similarly, $\lim _{x \rightarrow-\infty} f(x)=+\infty$ is equivalent to the statement that for every $M>0$, there exists some $n_{2}>0$ such that for all $x<-n_{2}, f(x)>M$.

Therefore, for every $M>0$ we can choose $n=\max \left\{n_{1}, n_{2}\right\}$ so that if $|x|>n$, then $f(x)>M$. We see that f does not attain its minimum outside $[-n, n]$.

But $[-n, n]$ is a compact set. Since the function f is continuous, it attains a minimum on $[-n, n]$ (by the Extreme Value Theorem). Let us denote the point where the minimum is attained as x_{0} : $f\left(x_{0}\right)=$ $\min _{x \in[-n, n]} f(x)$.

Due to the way we chose $n, f(x)<M$ for all $x \in[-n, n]$; thus, $f\left(x_{0}\right)<M$, and we see that $f\left(x_{0}\right)=$ $\min _{x \in \mathbb{R}} f(x)$. The proof is complete.

Problem 4. Given that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at 0 and $f^{\prime}(0)=1$, find

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}
$$

Give reasons for your answer.
Solution. To find the value of our expression, we will somewhat transform it by adding and subtracting $f(0)$:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)+f(0)-f(-x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}+\lim _{x \rightarrow 0} \frac{f(0)-f(-x)}{x} .
$$

In the second expression, we can introduce a new variable $w=-x$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} & +\lim _{x \rightarrow 0} \frac{f(0)-f(-x)}{x}= \\
& =\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}+\lim _{x \rightarrow 0} \frac{f(-x)-f(0)}{-x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}+\lim _{w \rightarrow 0} \frac{f(w)-f(0)}{w} .
\end{aligned}
$$

Now recall the definition of the derivative of function f :

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Thus,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

This is exactly the expression we obtained above. So we can write

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}+\lim _{w \rightarrow 0} \frac{f(w)-f(0)}{w}=f^{\prime}(0)+f^{\prime}(0)=2 * f^{\prime}(0) .
$$

Finally, since we are given $f^{\prime}(0)=1$, we can say that

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}=2 * 1=2
$$

Answer. $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}=2$.

