Problem 1. Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers with the property

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = L \in [-\infty, +\infty].$$

Sample: Real Analysis - Real Analysis Task

Prove that the sequences $a_n = \frac{x_n + y_n}{2}$ and $b_n = \sqrt{x_n y_n}$ are convergent to *L*. (For $\{b_n\}$, it is assumed that $x_n, y_n \ge 0$, of course.)

Solution. Suppose $\varepsilon > 0$.

Since we are given $\lim_{n\to\infty} x_n = L$, then by definition of the limit of a sequence there exists some $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|x_n - L| < \frac{\varepsilon}{2}$.

Similarly, since $\lim_{n\to\infty} y_n = L$, there exists some $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|y_n - L| < \frac{\varepsilon}{2}$.

Let us now choose $N = \max\{N_1, N_2\}$. For n > N, both of the above inequalities hold. We can therefore add them together:

$$|x_n - L| + |y_n - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for every n > N.

Next, recalling the triangle inequality, we have

$$|(x_n + y_n) - (L + L)| \le |x_n - L| + |y_n - L|$$

and thus

$$|(x_n + y_n) - 2L| < \varepsilon.$$

We see that $\lim_{n \to \infty} (x_n + y_n) = 2L$.

Finally, recall the following property of limits of real sequences:

$$\lim_{n \to \infty} c x_n = c \lim_{n \to \infty} x_n \quad \text{for every } c \in \mathbb{R}.$$

By applying this property, we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2} (x_n + y_n) = \frac{1}{2} \lim_{n \to \infty} (x_n + y_n) = \frac{1}{2} * 2L = L,$$

and we have completed the first part of the proof.

Let us now look at sequence b_n .

This part will be slightly more complicated, since we will need to use an additional result: *every convergent sequence is bounded*. Let us prove this statement.

We will use $\{x_n\}$ as an example. Recall that we have $\lim_{n\to\infty} x_n = L \in \mathbb{R}$, which means that $\{x_n\}$ is a convergent sequence. According to the definition given above, there exists some $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|x_n - L| < \varepsilon$, or $L - \varepsilon < x_n < L + \varepsilon$.

The set $\{x_n: 1 \le n \le N_1\}$ is finite and therefore bounded: there exist $m, M \in \mathbb{R}$ such that for all $n \le N_1$, we have $m < x_n < M$.

Now take $m' = \min\{L - \varepsilon, m\}$ and $M' = \max\{L + \varepsilon, M\}$. We now have that for all $n \in \mathbb{N}$, $m' < x_n < M'$, so the sequence $\{x_n\}$ is bounded.

We can now proceed to the final part of our proof.

Applying the result above to both $\{x_n\}$ and $\{y_n\}$, we can state that there exist $m', m'', M', M'' \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, $m' < x_n < M'$ and $m'' < y_n < M''$. We now choose $M = \max\{1, |L|, |m'|, |m''|, |M'|, |M''|\}$.

We can repeat our definition of convergence for x_n and y_n :

- there exists some $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|x_n L| < \frac{\varepsilon}{2M}$;
- there exists some $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|y_n L| < \frac{\varepsilon}{2M}$.

Just like for a_n , choose $N = \max\{N_1, N_2\}$, and both inequalities hold for n > N. Now let us evaluate $|x_n y_n - L^2|$.

$$|x_n y_n - L^2| = |x_n y_n - x_n L + x_n L - L^2| = |x_n (y_n - L) + L(x_n - L)|$$

Apply the triangle inequality:

 $|x_n(y_n - L) + L(x_n - L)| \le |x_n| * |y_n - L| + |L| * |x_n - L| \le M \frac{\varepsilon}{2M} + |L| \frac{\varepsilon}{2M}.$

But $|L| \leq M$ by definition of M, so

$$M\frac{\varepsilon}{2M} + |L|\frac{\varepsilon}{2M} \le 2M\frac{\varepsilon}{2M} = \varepsilon.$$

Combining the first and last steps, we have

$$|x_n y_n - L^2| \le \varepsilon,$$

which means that $\lim_{n \to \infty} x_n y_n = L^2$.

Suppose that $L \neq 0$. As we have just shown, there exists an $N \in \mathbb{N}$ such that for every n > N, $|x_n y_n - L^2| \le \varepsilon$, which can be modified to $|x_n y_n - L^2| \le \varepsilon |L|$.

Now consider

$$\left|\sqrt{x_n y_n} - L\right| = \left|\sqrt{x_n y_n} - L\right| \frac{\left|\sqrt{x_n y_n} + L\right|}{\left|\sqrt{x_n y_n} + L\right|} = \frac{|x_n y_n - L^2|}{|\sqrt{x_n y_n} + L|} \le \frac{|x_n y_n - L^2|}{|L|} < \frac{\varepsilon |L|}{|L|} = \varepsilon.$$

Thus, if $L \neq 0$, we have $\lim_{n \to \infty} \sqrt{x_n y_n} = L$.

Now suppose that L=0. Since $\lim_{n\to\infty} x_n y_n = L^2 = 0$, there exists some $N \in \mathbb{N}$ such that for every n > 0N, $x_n y_n = |x_n y_n - 0| < \varepsilon^2$ (note that here we have used the condition that $x_n, y_n \ge 0$). Then $\sqrt{x_n y_n} < 0$ $\sqrt{\varepsilon^2} = \varepsilon$, and $|\sqrt{x_n y_n} - L| = |\sqrt{x_n y_n}| < \varepsilon$, and in this case we also have $\lim_{n \to \infty} \sqrt{x_n y_n} = L$.

The proof is complete.

Problem 2. Find the radius of convergence of the following power-series

$$\sum_{n=0}^{\infty} \frac{1 + (-1)^n}{\sqrt{n} \, 2^n} z^n,$$

specify the disk of convergence, and study the convergence at the points z on the boundary of that disk situated on the real line, respectively on the y-axis.

(ATTN: We are taking about four values of *z* here.)

Solution. To find the radius of convergence, we will first need to find the limit superior of the sequence $\left\{(c_n)^{\frac{1}{n}}\right\}$, where (in our case) $c_n = \frac{1+(-1)^n}{\sqrt{n} 2^n}$. To do this, note that $c_{2k} = \frac{1+1}{\sqrt{2k} 2^{2k}} = \frac{2}{\sqrt{2k} 2^{2k}} > 0$, whereas $c_{2k+1} = \frac{1-1}{\sqrt{2k+1} \cdot 2^{2k+1}} = 0$. Thus,

$$\lim_{n \to \infty} \sup(c_n)^{\frac{1}{n}} = \lim_{n \to \infty} \sup\left(\frac{1 + (-1)^n}{\sqrt{n} \, 2^n}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{2}{\sqrt{n} \, 2^n}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{2^{\frac{1}{n}}}{2(\sqrt{n})^{\frac{1}{n}}}.$$

Now note that $\lim_{n \to \infty} n^{\frac{1}{2n}} = \lim_{n \to \infty} e^{\frac{1}{2n} \ln n} = 1$ and $\lim_{n \to \infty} 2^{\frac{1}{n}} = 2^0 = 1$. Therefore, $\lim_{n \to \infty} \sup(c_n)^{\frac{1}{n}} = \frac{1}{2 * 1} = \frac{1}{2}.$

Applying the formula for radius of convergence, we have

$$R = \frac{1}{\lim_{n \to \infty} \sup(c_n)^{\frac{1}{n}}} = 2.$$

The disk of convergence is $\Delta_R = \{z: |z| < 2\}.$

The last part of the problem is to study the convergence at the points z on the boundary of that disk situated on the real line, respectively on the y-axis. These points are (2, 0), (0, 2), (-2, 0), (0, -2).

• *z*₁ = 2

$$\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} \, 2^n} \, 2^n = \sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n}} = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n}} + \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Note that the series $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverges, since we know that power series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1 and in our case $p = \frac{1}{2} < 1$. However, $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges, which can be shown by the alternating series test, since the sequence $\{\frac{1}{\sqrt{n}}\}$ decreases monotonically and goes to zero in the limit as $n \to \infty$. Now recall that the sum of ta convergent and divergent series diverges. Thus,

Now recall that the sum of ta convergent and divergent series diverges. Thus, $\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} 2^n} 2^n \text{ diverges.}$

• $z_2 = 2i$ Recall that $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$, $i^{4k} = 1$ for every $k \in \mathbb{N}$. Therefore,

$$\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} \, 2^n} (2i)^n =$$

$$= \sum_{n=0}^{\infty} \frac{1+(-1)^{4n+1}}{\sqrt{4n+1}} i - \sum_{n=0}^{\infty} \frac{1+(-1)^{4n+2}}{\sqrt{4n+2}} - \sum_{n=0}^{\infty} \frac{1+(-1)^{4n+3}}{\sqrt{4n+3}} i$$

$$+ \sum_{n=0}^{\infty} \frac{1+(-1)^{4n}}{\sqrt{4n}} = i \sum_{n=0}^{\infty} \left(\frac{1+(-1)^{4n+1}}{\sqrt{4n+1}} - \frac{1+(-1)^{4n+3}}{\sqrt{4n+3}} \right)$$

$$+ \sum_{n=0}^{\infty} \left(\frac{1+(-1)^{4n}}{\sqrt{4n}} - \frac{1+(-1)^{4n+2}}{\sqrt{4n+2}} \right)$$

Now note that $(-1)^{4n} = (-1)^{4n+2} = 1$ and $(-1)^{4n+1} = (-1)^{4n+3} = -1$. Thus, swe can further simplify this expression as follows:

$$\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} \, 2^n} (2i)^n = i \sum_{n=0}^{\infty} \left(\frac{1-1}{\sqrt{4n+1}} - \frac{1-1}{\sqrt{4n+3}} \right) + \sum_{n=0}^{\infty} \left(\frac{1+1}{\sqrt{4n}} - \frac{1+1}{\sqrt{4n+2}} \right)$$
$$= \sum_{n=0}^{\infty} \left(\frac{2}{\sqrt{4n}} - \frac{2}{\sqrt{4n+2}} \right) = \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{2}{\sqrt{4n+2}} \right)$$

Let us now investigate convergence of this series. We will transform the summand:

$$\frac{1}{\sqrt{n}} - \frac{2}{\sqrt{4n+2}} = \frac{\sqrt{4n+2}-2\sqrt{n}}{\sqrt{n}\sqrt{4n+2}} = \frac{4n+2-4n}{\sqrt{n}\sqrt{4n+2}\left(\sqrt{4n+2}+2\sqrt{n}\right)} = \frac{2}{\sqrt{n}\sqrt{4n+2}\left(\sqrt{4n+2}+2\sqrt{n}\right)}$$

We will use the comparison convergence test. Since $\sqrt{4n+2} > \sqrt{4n}$, we have

$$\frac{2}{\sqrt{n}\sqrt{4n+2}\left(\sqrt{4n+2}+2\sqrt{n}\right)} \le \frac{2}{\sqrt{n}\sqrt{4n}\left(\sqrt{4n}+2\sqrt{n}\right)} = \frac{2}{2n\left(2\sqrt{n}+2\sqrt{n}\right)} = \frac{1}{3n\sqrt{n}} = \frac{1}{3n\sqrt{n}} = \frac{1}{3n^{\frac{3}{2}}}$$

Recall again that the power series $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1; here $p = \frac{3}{2} > 1$, so our series $\sum_{n=0}^{\infty} \frac{1}{2n^{\frac{3}{2}}}$ converges.

Finally, by applying the comparison convergence test, we see that the initial series $\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n}2^n} (2i)^n$ also **converges**.

•
$$z_3 = -2$$

$$\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} \, 2^n} (-2)^n = \sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n}} (-1)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}} + \sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$$

This expression is equal to the one we obtained for $\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} 2^n} 2^n$, and we have already shown that this series **diverges** above.

• $z_4 = -2i$

$$\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n} \, 2^n} (-2i)^n = \sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n}} (-i)^n$$

We will use the same approach as for $z_2 = 2i$.

$$\sum_{n=0}^{\infty} \frac{1+(-1)^n}{\sqrt{n}} (-i)^n =$$

$$= -\sum_{n=0}^{\infty} \frac{1+(-1)^{4n+1}}{\sqrt{4n+1}} i - \sum_{n=0}^{\infty} \frac{1+(-1)^{4n+2}}{\sqrt{4n+2}} + \sum_{n=0}^{\infty} \frac{1+(-1)^{4n+3}}{\sqrt{4n+3}} i$$

$$+ \sum_{n=0}^{\infty} \frac{1+(-1)^{4n}}{\sqrt{4n}} =$$

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$. Prove that such a function attains its minimum.

Solution. Let us first consider what we mean by $\lim_{x \to +\infty} f(x) = +\infty$: for every M > 0, there exists some $n_1 > 0$ such that for all $x > n_1$, we have f(x) > M.

Similarly, $\lim_{x\to\infty} f(x) = +\infty$ is equivalent to the statement that for every M > 0, there exists some $n_2 > 0$ such that for all $x < -n_2$, f(x) > M.

Therefore, for every M > 0 we can choose $n = \max\{n_1, n_2\}$ so that if |x| > n, then f(x) > M. We see that f does not attain its minimum outside [-n, n].

But [-n, n] is a compact set. Since the function f is continuous, it attains a minimum on [-n, n] (by the Extreme Value Theorem). Let us denote the point where the minimum is attained as x_0 : $f(x_0) = \min_{x \in [-n,n]} f(x)$.

Due to the way we chose n, f(x) < M for all $x \in [-n, n]$; thus, $f(x_0) < M$, and we see that $f(x_0) = \min_{x \in \mathbb{R}} f(x)$. The proof is complete.

Problem 4. Given that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at 0 and f'(0) = 1, find $\lim_{x \to 0} \frac{f(x) - f(-x)}{x}.$

Give reasons for your answer.

Solution. To find the value of our expression, we will somewhat transform it by adding and subtracting f(0):

$$\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0) + f(0) - f(-x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{x \to 0} \frac{f(0) - f(-x)}{x}$$

In the second expression, we can introduce a new variable $w = -x$:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{x \to 0} \frac{f(0) - f(-x)}{x} =$$
$$= \lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{x \to 0} \frac{f(-x) - f(0)}{-x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} + \lim_{w \to 0} \frac{f(w) - f(0)}{w}$$

Now recall the definition of the derivative of function *f* :

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Thus,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}.$$

$$\lim_{x \to 0} \frac{1}{x} + \lim_{w \to 0} \frac{1}{w} = f'(0) + f'(0) = 2 *$$

Finally, since we are given $f'(0) = 1$, we can say that
 $f(x) = f(-x)$

$$\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = 2 * 1 = 2.$$

Answer. $\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = 2.$