
Problem 1. Let {𝑥𝑛} and {𝑦𝑛} be sequences of real numbers with the property 

lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑦𝑛 = 𝐿 ∈ [−∞, +∞]. 

Prove that the sequences 𝑎𝑛 = 𝑥𝑛+𝑦𝑛
2

  and 𝑏𝑛 = √𝑥𝑛𝑦𝑛  are convergent to 𝐿. 
(For {𝑏𝑛}, it is assumed that  𝑥𝑛, 𝑦𝑛 ≥ 0,  of course.) 

Solution. Suppose 𝜀 > 0. 
Since we are given lim

𝑛→∞
𝑥𝑛 = 𝐿, then by definition of the limit of a sequence there exists some 𝑁1 ∈

ℕ such that if 𝑛 > 𝑁1 then |𝑥𝑛 − 𝐿| < 𝜀
2
. 

Similarly, since  lim
𝑛→∞

𝑦𝑛 = 𝐿, there exists some 𝑁2 ∈ ℕ such that if 𝑛 > 𝑁2 then |𝑦𝑛 − 𝐿| < 𝜀
2
. 

Let us now choose 𝑁 = max{𝑁1, 𝑁2}. For 𝑛 > 𝑁, both of the above inequalities hold. We can 
therefore add them together: 

|𝑥𝑛 − 𝐿| + |𝑦𝑛 − 𝐿| <
𝜀
2

+
𝜀
2

= 𝜀 

for every 𝑛 > 𝑁. 
Next, recalling the triangle inequality, we have 

|(𝑥𝑛 + 𝑦𝑛) − (𝐿 + 𝐿)| ≤ |𝑥𝑛 − 𝐿| + |𝑦𝑛 − 𝐿|, 
and thus 

|(𝑥𝑛 + 𝑦𝑛) − 2𝐿| < 𝜀. 
We see that lim

𝑛→∞
(𝑥𝑛 + 𝑦𝑛) = 2𝐿. 

Finally, recall the following property of limits of real sequences: 
lim

𝑛→∞
𝑐 𝑥𝑛 = 𝑐 lim

𝑛→∞
𝑥𝑛    for every 𝑐 ∈ ℝ. 

By applying this property, we have 

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

1
2

(𝑥𝑛 + 𝑦𝑛) =
1
2

lim
𝑛→∞

(𝑥𝑛 + 𝑦𝑛) =
1
2

∗ 2𝐿 = 𝐿, 

and we have completed the first part of the proof. 

Let us now look at sequence 𝑏𝑛. 
This part will be slightly more complicated, since we will need to use an additional result: every 

convergent sequence is bounded. Let us prove this statement. 
We will use {𝑥𝑛} as an example. Recall that we have lim

𝑛→∞
𝑥𝑛 = 𝐿 ∈ ℝ, which means that { 𝑥𝑛} is a

convergent sequence. According to the definition given above, there exists some 𝑁1 ∈ ℕ such that if 𝑛 > 𝑁1 
then |𝑥𝑛 − 𝐿| < 𝜀, or 𝐿 − 𝜀 < 𝑥𝑛 < 𝐿 + 𝜀. 

The set {𝑥𝑛:  1 ≤ 𝑛 ≤ 𝑁1} is finite and therefore bounded: there exist 𝑚, 𝑀 ∈ ℝ such that for all 
𝑛 ≤ 𝑁1, we have 𝑚 < 𝑥𝑛 < 𝑀. 

Now take 𝑚′ = min{𝐿 − 𝜀, 𝑚}  and 𝑀′ = max{𝐿 + 𝜀, 𝑀}.  We now have that for all 𝑛 ∈ ℕ,  𝑚′ <
𝑥𝑛 < 𝑀′, so the sequence {𝑥𝑛} is bounded.

We can now proceed to the final part of our proof. 
Applying the result above to both {𝑥𝑛} and {𝑦𝑛}, we can state that there exist 𝑚′, 𝑚′′, 𝑀′, 𝑀′′ ∈ ℝ

such that for all 𝑛 ∈ ℕ, 𝑚′ < 𝑥𝑛 < 𝑀′ and 𝑚′′ < 𝑦𝑛 < 𝑀′′. We now choose 𝑀 =
max{1, |𝐿|, |𝑚′|, |𝑚′′|, |𝑀′|, |𝑀′′|}. 

We can repeat our definition of convergence for 𝑥𝑛 and 𝑦𝑛: 
x there exists some 𝑁1 ∈ ℕ such that if 𝑛 > 𝑁1 then |𝑥𝑛 − 𝐿| < 𝜀

2𝑀
; 

x there exists some 𝑁2 ∈ ℕ such that if 𝑛 > 𝑁2 then |𝑦𝑛 − 𝐿| < 𝜀
2𝑀

. 
Just like for 𝑎𝑛, choose 𝑁 = max{𝑁1, 𝑁2}, and both inequalities hold for 𝑛 > 𝑁. 
Now let us evaluate |𝑥𝑛𝑦𝑛 − 𝐿2|.
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|𝑥𝑛𝑦𝑛 − 𝐿2| = |𝑥𝑛𝑦𝑛 − 𝑥𝑛𝐿 + 𝑥𝑛𝐿 − 𝐿2| = |𝑥𝑛(𝑦𝑛 − 𝐿) + 𝐿(𝑥𝑛 − 𝐿)|
Apply the triangle inequality: 

|𝑥𝑛(𝑦𝑛 − 𝐿) + 𝐿(𝑥𝑛 − 𝐿)| ≤ |𝑥𝑛| ∗ |𝑦𝑛 − 𝐿| + |𝐿| ∗ |𝑥𝑛 − 𝐿| ≤ 𝑀
𝜀

2𝑀
+ |𝐿|

𝜀
2𝑀

. 

But |𝐿| ≤ 𝑀 by definition of 𝑀, so 

𝑀
𝜀

2𝑀
+ |𝐿|

𝜀
2𝑀

≤ 2𝑀
𝜀

2𝑀
= 𝜀. 

Combining the first and last steps, we have 
|𝑥𝑛𝑦𝑛 − 𝐿2| ≤ 𝜀,

which means that lim
𝑛→∞

𝑥𝑛𝑦𝑛 = 𝐿2.

Suppose that 𝐿 ≠ 0.  As we have just shown, there exists an 𝑁 ∈ ℕ such that for every 𝑛 > 𝑁, 
|𝑥𝑛𝑦𝑛 − 𝐿2| ≤ 𝜀, which can be modified to |𝑥𝑛𝑦𝑛 − 𝐿2| ≤ 𝜀|𝐿|.

Now consider 

|√𝑥𝑛𝑦𝑛 − 𝐿| = |√𝑥𝑛𝑦𝑛 − 𝐿|
|√𝑥𝑛𝑦𝑛 + 𝐿|
|√𝑥𝑛𝑦𝑛 + 𝐿|

=
|𝑥𝑛𝑦𝑛 − 𝐿2|
|√𝑥𝑛𝑦𝑛 + 𝐿|

≤
|𝑥𝑛𝑦𝑛 − 𝐿2|

|𝐿| <
𝜀|𝐿|
|𝐿| = 𝜀. 

Thus, if 𝐿 ≠ 0, we have lim
𝑛→∞

√𝑥𝑛𝑦𝑛 = 𝐿.

Now suppose that 𝐿 = 0. Since lim
𝑛→∞

𝑥𝑛𝑦𝑛 = 𝐿2 = 0, there exists some 𝑁 ∈ ℕ such that for every 𝑛 >

𝑁, 𝑥𝑛𝑦𝑛 = |𝑥𝑛𝑦𝑛 − 0| < 𝜀2 (note that here we have used the condition that  𝑥𝑛, 𝑦𝑛 ≥ 0). Then √𝑥𝑛𝑦𝑛 <

√𝜀2 = 𝜀, and |√𝑥𝑛𝑦𝑛 − 𝐿| = |√𝑥𝑛𝑦𝑛| < 𝜀, and in this case we also have  lim
𝑛→∞

√𝑥𝑛𝑦𝑛 = 𝐿.

The proof is complete. 

Problem 2. Find the radius of convergence of the following power-series 

∑
1 + (−1)n

√𝑛 2𝑛

∞

𝑛=0

𝑧𝑛, 

specify the disk of convergence, and study the convergence at the points 𝑧 on the boundary of that disk 
situated on the real line, respectively on the 𝑦-axis. 
(ATTN: We are taking about four values of 𝑧 here.) 

Solution. To find the radius of convergence, we will first need to find the limit superior of the sequence 

{(𝑐𝑛)
1
𝑛},  where (in our case) 𝑐𝑛 = 1+(−1)n

√𝑛 2𝑛 . To do this, note that 𝑐2𝑘 = 1+1
√2𝑘 22𝑘 = 2

√2𝑘 22𝑘 > 0,  whereas 

𝑐2𝑘+1 = 1−1
√2𝑘+1 22𝑘+1 = 0. Thus, 

lim
𝑛→∞

sup(𝑐𝑛)
1
𝑛 = lim

𝑛→∞
sup (

1 + (−1)n

√𝑛 2𝑛 )

1
𝑛

= lim
𝑛→∞

(
2

√𝑛 2𝑛
)

1
𝑛

= lim
𝑛→∞

2
1
n

2(√𝑛)
1
𝑛

. 

Now note that lim
𝑛→∞

𝑛
1

2𝑛 = lim
𝑛→∞

𝑒
1

2𝑛 ln 𝑛 = 1 and lim
𝑛→∞

2
1
n = 20 = 1. Therefore, 

lim
𝑛→∞

sup(𝑐𝑛)
1
𝑛 =

1
2 ∗ 1

=
1
2

. 

Applying the formula for radius of convergence, we have 

𝑅 =
1

lim
𝑛→∞

sup(𝑐𝑛)
1
𝑛

= 2. 

The disk of convergence is 𝛥𝑅 = {𝑧: |𝑧| < 2}. 
The last part of the problem is to study the convergence at the points 𝑧 on the boundary of that disk 

situated on the real line, respectively on the 𝑦-axis. These points are (2, 0), (0, 2), (−2, 0), (0, −2). 
x 𝑧1 = 2
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∑
1 + (−1)n

√𝑛 2𝑛

∞

𝑛=0

2𝑛 = ∑
1 + (−1)n

√𝑛

∞

𝑛=0

= ∑
1

√𝑛

∞

𝑛=0

+ ∑
(−1)n

√𝑛

∞

𝑛=0

Note that the series ∑ 1
√𝑛

∞
𝑛=0  diverges, since we know that power series ∑ 1

𝑛𝑝
∞
𝑛=0  converges 

if and only if 𝑝 > 1 and in our case 𝑝 = 1
2

< 1. 

However, ∑ (−1)n

√𝑛
∞
𝑛=0  converges, which can be shown by the alternating series test, since the 

sequence { 1
√𝑛

} decreases monotonically and goes to zero in the limit as 𝑛 → ∞. 

Now recall that the sum of ta convergent and divergent series diverges. Thus, 

∑ 1+(−1)n

√𝑛 2𝑛
∞
𝑛=0 2𝑛 diverges. 

x 𝑧2 = 2𝑖
Recall that 𝑖4𝑘+1 = 𝑖,  𝑖4𝑘+2 = −1,  𝑖4𝑘+3 = −𝑖,  𝑖4𝑘 = 1 for every 𝑘 ∈ ℕ. Therefore,

∑
1 + (−1)n

√𝑛 2𝑛

∞

𝑛=0

(2𝑖)𝑛 =

= ∑
1 + (−1)4n+1

√4𝑛 + 1
𝑖

∞

𝑛=0

− ∑
1 + (−1)4n+2

√4𝑛 + 2

∞

𝑛=0

− ∑
1 + (−1)4n+3

√4𝑛 + 3

∞

𝑛=0

𝑖

+ ∑
1 + (−1)4n

√4𝑛
=

∞

𝑛=0

𝑖 ∑ (
1 + (−1)4n+1

√4𝑛 + 1
−

1 + (−1)4n+3

√4𝑛 + 3
)

∞

𝑛=0

+ ∑ (
1 + (−1)4n

√4𝑛
−

1 + (−1)4n+2

√4𝑛 + 2
)

∞

𝑛=0

 

Now note that (−1)4n = (−1)4n+2 = 1 and (−1)4n+1 = (−1)4n+3 = −1. Thus, swe can 
further simplify this expression as follows: 

∑
1 + (−1)n

√𝑛 2𝑛

∞

𝑛=0

(2𝑖)𝑛 = 𝑖 ∑ (
1 − 1

√4𝑛 + 1
−

1 − 1
√4𝑛 + 3

)
∞

𝑛=0

+ ∑ (
1 + 1
√4𝑛

−
1 + 1

√4𝑛 + 2
)

∞

𝑛=0

= ∑ (
2

√4𝑛
−

2
√4𝑛 + 2

)
∞

𝑛=0

= ∑ (
1

√𝑛
−

2
√4𝑛 + 2

)
∞

𝑛=0

 

Let us now investigate convergence of this series. We will transform the summand: 
1

√𝑛
−

2
√4𝑛 + 2

=
√4𝑛 + 2 − 2√𝑛

√𝑛√4𝑛 + 2
=

4𝑛 + 2 − 4n
√𝑛√4𝑛 + 2 (√4𝑛 + 2 + 2√𝑛)

=

=
2

√𝑛√4𝑛 + 2 (√4𝑛 + 2 + 2√𝑛)
We will use the comparison convergence test. Since √4𝑛 + 2 > √4𝑛, we have 

2
√𝑛√4𝑛 + 2 (√4𝑛 + 2 + 2√𝑛)

≤
2

√𝑛√4𝑛 (√4𝑛 + 2√𝑛)
=

2
2𝑛 (2√𝑛 + 2√𝑛)

=
1

3𝑛√𝑛
=

=
1

3𝑛
3
2

Recall again that the power series ∑ 1
𝑛𝑝

∞
𝑛=0 converges if and only if 𝑝 > 1; here 𝑝 = 3

2
> 1, so 

our series ∑ 1

3𝑛
3
2

∞
𝑛=0  converges. 

Finally, by applying the comparison convergence test, we see that the initial series 

∑ 1+(−1)n

√𝑛 2𝑛
∞
𝑛=0 (2𝑖)𝑛 also converges. 

x 𝑧3 = −2
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∑
1 + (−1)n

√𝑛 2𝑛

∞

𝑛=0

(−2)𝑛 = ∑
1 + (−1)n

√𝑛
(−1)𝑛

∞

𝑛=0

= ∑
(−1)n

√𝑛

∞

𝑛=0

+ ∑
1

√𝑛

∞

𝑛=0

This expression is equal to the one we obtained for ∑ 1+(−1)n

√𝑛 2𝑛
∞
𝑛=0 2𝑛, and we have already 

shown that this series diverges above. 

x 𝑧4 = −2𝑖

∑
1 + (−1)n

√𝑛 2𝑛

∞

𝑛=0

(−2𝑖)𝑛 = ∑
1 + (−1)n

√𝑛
(−𝑖)𝑛

∞

𝑛=0

 

We will use the same approach as for 𝑧2 = 2𝑖. 

∑
1 + (−1)n

√𝑛
(−𝑖)𝑛

∞

𝑛=0

=

= − ∑
1 + (−1)4n+1

√4𝑛 + 1
𝑖

∞

𝑛=0

− ∑
1 + (−1)4n+2

√4𝑛 + 2

∞

𝑛=0

+ ∑
1 + (−1)4n+3

√4𝑛 + 3

∞

𝑛=0

𝑖

+ ∑
1 + (−1)4n

√4𝑛
=

∞

𝑛=0

 

Problem 3. Let 𝑓: ℝ → ℝ be a continuous function with the property lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→−∞

𝑓(𝑥) = +∞. Prove 

that such a function attains its minimum. 

Solution. Let us first consider what we mean by lim
𝑥→+∞

𝑓(𝑥) = + ∞:  for every 𝑀 > 0, there exists some 𝑛1 >

0 such that for all 𝑥 > 𝑛1, we have 𝑓(𝑥) >M. 
Similarly, lim

𝑥→−∞
𝑓(𝑥) = +∞ is equivalent to the statement that for every 𝑀 > 0, there exists some

𝑛2 > 0 such that for all 𝑥 < −𝑛2,   𝑓(𝑥) >M. 
Therefore, for every 𝑀 > 0 we can choose 𝑛 = max{𝑛1, 𝑛2} so that if |𝑥| > 𝑛, then  𝑓(𝑥) >M. We 

see that 𝑓 does not attain its minimum outside [−𝑛, 𝑛]. 
But [−𝑛, 𝑛] is a compact set. Since the function 𝑓 is continuous, it attains a minimum on [−𝑛, 𝑛] (by 

the Extreme Value Theorem). Let us denote the point where the minimum is attained as 𝑥0:  𝑓(𝑥0) =
min

𝑥∈[−𝑛,𝑛]
𝑓(𝑥). 

Due to the way we chose 𝑛, 𝑓(𝑥) < 𝑀 for all 𝑥 ∈ [−𝑛, 𝑛]; thus, 𝑓(𝑥0) < 𝑀, and we see that 𝑓(𝑥0) =
min
𝑥∈ℝ

𝑓(𝑥). The proof is complete. 

Problem 4. Given that 𝑓: ℝ → ℝ is differentiable at 0 and 𝑓′(0) = 1, find 

lim
𝑥→0

𝑓(𝑥) − 𝑓(−𝑥)
𝑥

. 

Give reasons for your answer. 

Solution. To find the value of our expression, we will somewhat transform it by adding and subtracting 𝑓(0): 

lim
𝑥→0

𝑓(𝑥) − 𝑓(−𝑥)
𝑥

= lim
𝑥→0

𝑓(𝑥) − 𝑓(0) + 𝑓(0) − 𝑓(−𝑥)
𝑥

= lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

+ lim
𝑥→0

𝑓(0) − 𝑓(−𝑥)
𝑥

. 

In the second expression, we can introduce a new variable 𝑤 = −𝑥: 

lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

+ lim
𝑥→0

𝑓(0) − 𝑓(−𝑥)
𝑥

=

= lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

+ lim
𝑥→0

𝑓(−𝑥) − 𝑓(0)
−𝑥

= lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

+ lim
𝑤→0

𝑓(𝑤) − 𝑓(0)
𝑤

. 
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Now recall the definition of the derivative of function 𝑓: 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

. 

Thus, 

𝑓′(0) = lim
ℎ→0

𝑓(ℎ) − 𝑓(0)
ℎ

. 

This is exactly the expression we obtained above. So we can write 

lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

+ lim
𝑤→0

𝑓(𝑤) − 𝑓(0)
𝑤

= 𝑓′(0) + 𝑓′(0) = 2 ∗ 𝑓′(0). 

Finally, since we are given 𝑓′(0) = 1, we can say that 

lim
𝑥→0

𝑓(𝑥) − 𝑓(−𝑥)
𝑥

= 2 ∗ 1 = 2. 

Answer.  lim
𝑥→0

𝑓(𝑥)−𝑓(−𝑥)
𝑥

= 2. 
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