Sample: Discrete Mathematics - Properties of Relations

Task 1. Suppose we are given set $A = \{1,2,3,4,6,12\}$ and a relation, R, from $A \times A$. The relation is defined as follows:

$$R = \{(a, b) | \text{ a divides b}, where(a, b) \text{ belongs to } A \times A\}.$$

- a) List all the ordered pairs (a, b) that are elements of the relation.
- b) Use the results from part a) to construct the corresponding zero-one matrix.

Solution. a) Relation R consists of the following pairs:

b) The matrix representing this relation has the following form:

	1	2	3	4	6	12
1	1	1	1	1	1	1
2	0	1	0	1	1	1
3	0	0	1	0	1	1
4	0	0	0	1	0	1
6	0	0	0	0	1	1
12	0	0	0	0	0	1

Task 2. Let R be the relation on the set of all people who have visited a particular Web page such that xRy if and only if person x and person y have followed the same set of links starting at this Web page (going from Web page to Web page until they stop using the Web). Show that R is an equivalence relation (i.e. it is reflexive, symmetric, and transitive).

Solution.

- 1) R is reflexive, that is xRx for all persons x. Indeed, x and x have followed the same set of links starting at this Web page.
- 2) R is symmetric, that is xRy then yRx. Indeed if x and y have followed the same set of links starting at this Web page, then y and z have followed the same set of links starting at this Web page.
- 3) R is transitive, that is if xRy and yRz then xRz. Indeed if x and y have followed the same set of links starting at this Web page, and y and z have followed the same set of links starting at this Web page, then x and y also have followed the same set of links starting at this Web page.

Task 3. For the relation R on the set $A = \{1,2,3,4\}$ given below, determine whether it is reflexive, symmetric, anti-symmetric and transitive.

$$R = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$$

Solution.

- 1) R is **not reflexive**, since $(1,1) \not\in R$.
- 2) R is **not symmetric**, since $(2,3) \in R$ but $(3,2) \notin R$.

- 3) R is **not anti-symmetric**, since both (1,3) and (3,1) belong to R.
- 4) R is **not transitive**, since $(1,3), (3,1) \in R$ but $(1,1) \notin R$.

Task 4 . List the ordered pairs in the relation R from $A = \{0,1,2,3,4\}$ to $B = \{0,1,2,3\}$, where $(a,b) \in R$ if and only if a+b=4.

Solution. The relation R consists of the following pairs:

$$(1,3)$$
, $(2,2)$, $(3,1)$, $(4,0)$.

Task 5. A department manager has 4 employees involved with 6 projects throughout the fiscal year. In how many ways can the manager assign these projects so that each employee is working on at least one project?

Solution. Let $P = \{1,2,3,4,5,6\}$ be the set of all projects. Each assignment is a partition of P into 4 non-empty subsets.

Therefore we should compute the number of partitions of P into ordered family of A non-empty subsets A_1 , A_2 , A_3 , A_4 .

Since every A_i is non-empty then there possible two distinct cases:

Case 1). One of these sets consists of 3 elements, and each of other three sets consists of a unique element, e.g.

$$A_1 = \{1,2,3\}, A_2 = \{4\}, A_3 = \{5\}, A_4 = \{6\}.$$

Each such partition is determined by three one-element sets, i.e. by choice of ordered 3-tuple from P, and then by 4 positions of the set of remained three elements of P.

Then the number of partitions in this case is equal to

$$6 * 5 * 4 * 4 = 480.$$

Case 2). Two sets are two-elements and other two sets are one-elements, e.g.

$$A_1 = \{1,2\}, \quad A_2 = \{3,4\}, \quad A_3 = \{5\}, \quad A_4 = \{6\}.$$

First let us compute the number of partitions of P into sets of 1, 1, 2 and 2 elements. Indeed, the first 1-elements set can be chosen from 6 elements. To each choice of that elements set correspond 5 choices of the second 1-elements set. Then third 2-elements set is chosen from the remained 4 elements, so we can choose that set into $C_4^2 = \frac{4!}{2!*(4-2)!} = 6$ ways. The fourth 2-elements set is then also determined. Hence the number partitions of P into sets of 1, 1, 2 and 2 elements is equal to

$$6 * 5 * C_4^2 = 6 * 5 * 6 = 180$$

Now we should take compute the number of distinct "words" obtained by permutations of 1122. This number is equal to the number of choices of two elements (say 1's) from 4-elements set, and so it is 6.

Hence the total number of functions in the case 2 is

$$180 * 6 = 1080.$$

Therefore the total number of all ways that the manager can assign these projects so that each employee is working on at least one project is equal to

$$480 + 1080 = 1560.$$

Task 6. A survey of households in the U.S. reveals that 96% have at least one television set, 98% have cell phone service and 95% have a cell phone and at least one television set. What percentage of households in the U.S. has neither cell phone nor a television set?

Solution. Let H be the set of all households, T be the set of all households having at least one television set, and C is the set of all households having cell phone service. For a subset $A \subset X$ denote by |A| the number of elements in A. Then by assumption

$$|T| = 0.96|X|$$
, $|C| = 0.98|X|$, $|T \cap C| = 0.95|X|$.

We should find the percentage of the set

$$X \setminus (T \cup C)$$

in X.

Notice that

$$C \setminus T = C \setminus (T \cap C) = |C| - |T \cap C| = (0.98 - 0.95)|X| = 0.03|X|.$$

Thus the number of households having cell phone service but not television set constitutes 3% over all households.

Hence

$$T \cup C = T \cup (C \setminus T) = (0.96 + 0.03)|X| = 0.99|X|,$$

so the number of households having at least one television set or cell phone service constitute 99% over all households.

Therefore percentage of households in the U.S. has neither cell phone nor a television set is 100 - 99 = 1%.

Task 7. Let
$$A = \{a, b, c, d\}$$
 and $B = \{1, 2, 3, 4\}$.

- a) How many functions $f: A \rightarrow B$ are there?
- b) How many functions $f: A \to B$ satisfy f(a) = 2?

Solution. a) Notice that a function $f: A \to B$ can associate to each of 4 elements A one of the 4 elements of B. To each of 4 choices of $a \mapsto f(a)$, correspond 4 choices of $b \mapsto f(b)$, so we get $4*4=4^2$ choices of values for a and b.

To each choice of (f(a), f(b)) correspond 4 choices of f(c), so we get $4*4*4=4^3$ choices of values for a, b, and c.

Similarly, there are 4^4 choices of values f(a), f(b), f(c), f(d). Thus the number of functions $f: A \to B$ is equal to $4^4 = 256$.

b) A function $f:A \to B$ satisfying f(a)=2, is uniquely determined by its values at points b,c,d. In other words, the number of functions $f:A \to B$ with f(a)=2 is equal to the number of functions $g:\{b,c,d\}\to B$. Similarly to a) the number of such functions $g:\{b,c,d\}\to B$ is equal to $4^3=64$.

Task 8. Use mathematical induction to prove the following proposition:

$$P(n)$$
: 3 + 5 + 7 + \cdots + 2 n + 1 = n (2 + n)

where n = 1,2,3,...

Proof. Let n = 1. Then

$$P(1) = 3$$
,

and

$$n(2 + n) = 1 * (2 + 1) = 3 = P(1).$$

Suppose that we proved that

$$3 + 5 + 7 + \dots + 2k + 1 = k(2 + k)$$

for all $k \le n$. Let us prove this for k = n + 1, that is

$$P(n)$$
: 3 + 5 + 7 + ... + 2(n + 1) + 1 = (n + 1)(2 + n + 1) = (n + 1)(n + 3) = n^2 + 4n + 3.

We have that

$$P(n+1) = 3+5+7+\dots+2n+1+2(n+1)+1$$

$$= (3+5+7+\dots+2n+1)+2(n+1)+1$$

$$= n(2+n)+2(n+1)+1$$

$$= 2n+n^2+2n+2+1$$

$$= n^2+4n+3.$$

Now by induction relation

$$P(n)$$
: 3 + 5 + 7 + \cdots + 2 n + 1 = n (2 + n)

holds for all $n \ge 1$.

Task 9. Express the greatest common divisor of the following pair of integers as a linear combination of the integers:

117, 213

Solution. First we find prime decompositions of 117 and 213:

117 =
$$3 * 39 = 3 * 3 * 13 = 3^2 * 13$$
,
213 = $3 * 71$.

Thus

$$GCD(117,213) = 3.$$

We should find numbers p and q such that

$$117p + 213q = 3$$
.

Contracting by 3 we obtain

$$39p + 71q = 1$$
.

Notice that this identity modulo 39 and 71 means that

$$71q \equiv 1 \mod 39$$
,

$$39p \equiv 1 \mod 71$$
.

Let $\phi(m)$ be the Euler function which is equal to the number of numbers a such that $1 \le a < m$ and GCD(a,m) = 1. Then by Euler theorem if GCD(b,m) = 1, then

$$b^{\phi(m)} \equiv 1 \mod m$$
.

It is known that

$$\phi(p) = p - 1$$

for any prime p, and if GCD(a, b) = 1, then

$$\phi(a*b) = \phi(a)*\phi(b).$$

Hence

$$\phi(71) = 71 - 1 = 70$$

and

$$\phi(39) = \phi(3 * 13) = \phi(3) * \phi(13) = (3-1) * (13-1) = 2 * 12 = 24.$$

Since GCD(71,39) = 1, it follows from Euler theorem that

$$71^{\phi(39)} = 71^{24} = 1 \mod 39$$

$$39^{\phi(71)} = 39^{70} = 1 \mod 71$$
.

Thus for solving equations

$$71q \equiv 1 \mod 39$$
,

$$39p \equiv 1 \mod 71$$
.

we can put

$$q = 71^{24-1} = 71^{23}$$
mod 39

$$p = 39^{70-1} = 39^{69} \mod{71}$$
.

Then

$$71q = 71 * 71^{23} = 71^{24} = 1 \mod 39$$

and similarly,

$$39p = 39 * 39^{69} = 39^{70} = 1 \mod{71}$$
.

Let us compute 71^{23} mod 39:

$$q = 71^{23} \equiv (2 * 39 - 7)^{23} \equiv (-7)^{23} \equiv -7 * (7^{2})^{11} \equiv -7 * 49^{11}$$

$$\equiv -7 * (39 + 10)^{11} \equiv -7 * 10^{11} = -7 * 10 * 100^{5} = -70 * 100^{5}$$

$$= -(2 * 39 - 8) * (3 * 39 - 17)^{5} \equiv -8 * 17^{5} = -8 * 17 * (17^{2})^{2} = -136 * 289^{2}$$

$$= -(3 * 39 + 19) * (7 * 39 + 16)^{2} \equiv -19 * 16 * 2 = -19 * 256$$

$$= -19 * (39 * 6 + 22) \equiv -19 * 22$$

$$= -418 = -418 + 39 * 11 = 11 \mod 39$$

Then

$$71q = 71 * 11 = 781 = 1 + 20 * 39 \equiv 1 \mod 39.$$

Hence

$$71 * 11 - 39 * 20 = 1$$
.

Multiplying by 3 both parts of this identity we obtain:

$$213 * 11 - 117 * 20 = 3$$

which gives the required expression of GCD(117,213) = 3 as a linear combination of 117 and 213.