SUBMIT

Sample: Differential Geometry - Mathematics Assignment

Question 1 . Steiner's Roman surface is defined as the image of the map

$$F: \mathbf{RP}_2 \to \mathbf{R}^3$$

induced by the map $\widehat{F}: \mathbf{S}^2 \to \mathbf{R}^3$ such that

$$F(x_1, x_2, x_3) = (x_2 x_3, x_1 x_3, x_1 x_2).$$

Show that F fails to be an immersion at six points on \mathbf{RP}_2 .

Proof. Let

$$\mathbf{S}^2 = \{(x_1, x_2, x_3) \in \mathbf{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1\}$$

be the unit sphere in \mathbb{R}^3 . Then by definition the projective plane \mathbb{RP}_2 is the space of pairs of antipodal points of \mathbb{S}^2 , that is the factor-space of \mathbb{S}^2 by the following equivalence relation:

$$(x_1, x_2, x_3): (-x_1, -x_2, -x_3).$$

Let us prove that \hat{F} induces a certain map $\mathbf{RP}_2 \rightarrow \mathbf{R}^3$. Let $\alpha: \mathbf{S}^2 \rightarrow \mathbf{RP}_2$ be the factor map.

Since $(-x_i)(-x_j) = x_i x_j$ it follows that

$$\hat{F}(-x_1, -x_2, -x_3) = (-x_2(-x_3), -x_1(-x_3), -x_1(-x_2))
= (x_2x_3, x_1x_3, x_1x_2)
= \hat{F}(x_1, x_2, x_3).$$

Thus \hat{F} constant of equivalence class, and so it induces a map $F: \mathbb{RP}_2 \to \mathbb{R}^3$ such that $\hat{F} = F \circ \alpha$.

Now let us check that F is an immersion. First we recall the definition of an immersion.

Let M, N are smooth two manifolds, $f: M \to N$ be a C^1 map, and $x \in M$. Then f is an *immersion* at x if the tangent map $T_x f: T_x M \to T_{f(x)} N$ is injective. Suppose dimM = m and dimN = n, and we choose local coordinates $(x_1, ..., x_m)$ on M at x and $(y_1, ..., y_n)$ on N at f(x). Then f is an immersion at x if the Jacobi matrix of f at x (consisting of partial derivatives of coordinate functions of f) has rank m.

Evidently, a composition of immersions is an immersion as well.

Notice that the factor map $\alpha: \mathbf{S}^2 \to \mathbf{RP}_2$ is local diffeomorphism, so the tangent map α at each point $q \in \mathbf{S}^2$ is an isomorphism, and so α is an immersion. Thus in order to find points on \mathbf{RP}_2 at which F is not an immersion we should find points on \mathbf{S}^2 at which \hat{F} is not an immersion and take their images in \mathbf{RP}_2 .

Moreover, we can extend \hat{F} to the map $\mathbf{R}^3 \to \mathbf{R}^3$ by the same formula. Then the Jacobi matrix of \hat{F} is equal to

$$J(\hat{F}) = \begin{pmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & x_1 \\ x_2 & x_1 & 0 \end{pmatrix}$$

and its determinant is

$$|J(\hat{F})| = \begin{vmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & x_1 \\ x_2 & x_1 & 0 \end{vmatrix} = -x_1 x_2 x_3 - x_1 x_2 x_3 = -2x_1 x_2 x_3.$$

Let $q = (x_1, x_2, x_3)$. Then $|J(\hat{F})(q)| \neq 0$ if and only if all coordinates (x_1, x_2, x_3) are non-zero, i.e. the point q does not belongs to the coordinate planes xy, yz, and xz. At each of these points the tangent map

$$T_q \widehat{F}: T_q \mathbf{R}^3 \to T_{\widehat{F}(q)} \mathbf{R}^3$$

is an isomorphism. In particular, if in addition $q \in \mathbf{S}^2$, the restriction of $T_q \hat{F}$ to the tangent plane $T_q \mathbf{S}^2$ is injective, whence \hat{F} is an immersion at q. Therefore at the corresponding point $\alpha(q) \in \mathbf{RP}_2$ the map F is an immersion as well.

SUBMIT

Suppose one of coordinates of q is zero. Not loosing generality assume that $x_1 = 0$. As $x_1^2 + x_2 + x_3^2 = 1$, it follows that $x_2^2 + x_3^2 = 1$, whence either x_2 or x_3 is non-zero. Then the Jacobi matrix at q is

$$J(\hat{F})(q) = \begin{pmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & 0 \\ x_2 & 0 & 0 \end{pmatrix}$$

and its rank (as of a map $\mathbf{R}^3 \to \mathbf{R}^3$) is 2, as at least one of the following 2×2 -minores is non-zero: $\begin{vmatrix} 0 & x_3 \end{vmatrix} = \begin{vmatrix} 0 & x_2 \end{vmatrix} = \begin{vmatrix} 0 & x_2 \end{vmatrix}$

$$\begin{vmatrix} 0 & x_3 \\ x_3 & 0 \end{vmatrix} = -x_3^2, \qquad \begin{vmatrix} 0 & x_2 \\ x_2 & 0 \end{vmatrix} = -x_2^2.$$

Now the us find intersection of the null space of matrix $J(\hat{F})(q)$ with the tangent space $T_q S^2$. Then the restriction of \hat{F} to S^2 is an immersion if and only if that intersection is non-zero. Suppose the tangent vector $\xi = (q, h, c) \in T \mathbb{R}^3$ belongs to the null space of $J(\hat{F})(q)$. Thus

Suppose the tangent vector $\xi = (a, b, c) \in T_q \mathbf{R}^3$ belongs to the null space of $J(\hat{F})(q)$. Thus $\begin{pmatrix} 0 \\ & & \\ \end{pmatrix} \begin{pmatrix} 0 \\ & & \\ & & \\ \end{pmatrix} \begin{pmatrix} a \\ & & \\ & & \\ \end{pmatrix} \begin{pmatrix} bx_3 + cx_2 \\ & & \\ \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = J(\hat{F})(p) \cdot \xi = \begin{pmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & 0 \\ x_2 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b x_3 + c x_2 \\ a x_2 \\ a x_3 \end{pmatrix}$$

As either x_2 or x_3 is non-zero, it follows that a = 0 and $bx_3 + cx_2 = 0$. Whence the null space of $J(\hat{F})(q)$ is spanned by the following vector

$$\eta = \begin{pmatrix} 0 \\ -x_2 \\ x_3 \end{pmatrix}$$

The restriction of \hat{F} to \mathbf{S}^2 at q is not an immersion if and only if η belongs to the tangent space $T_q \mathbf{S}^2$ of \mathbf{S}^2 at q. The latter condition means that η is orthogonal to the vector $\vec{q} \in \mathbf{R}^3$, so their scalar product is zero:

 $\langle \eta, \vec{q} \rangle = 0 = (0, -x_2, x_3) \cdot (0, x_2, x_3) = 0 \cdot 0 - x_2 x_2 + x_3 x_3 = -x_2^2 + x_3^2.$ It then follows that

$$x_2^2 = x_3^2$$
, \Rightarrow $x_2 = \pm x_3$.

As $x_2^2 + x_3^2 = 1$, we obtain that

$$x_2^2 = x_3^2 = \frac{1}{2}, \quad \Rightarrow \quad x_2 = \pm \frac{1}{\sqrt{2}}, \quad x_3 = \frac{1}{\sqrt{2}},$$

Thus there are the 4 points on \mathbf{S}^2 with x_0 at which \hat{F} is not an immersion:

$$X_1 = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \qquad X_2 = \left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right),$$

$$X_{3} = \left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \qquad X_{4} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

Since $X_1 = -X_2$ they define the same point $\alpha(X_1) = \alpha(X_2)$ on **RP**₂, and at this point the map F is not an immersion. The same statement hold for the pair X_3 and X_4 .

Thus we have found two points on PR^2 with $x_1 = 0$ at which F is not an immersion.

Due to the symmetry, in each of the cases $x_2 = 0$ and $x_3 = 0$ we also have 2 non-immersion points, and so the map F has the following six points at which it is not an immersion:

$$\pm \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \quad \pm \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$$

$$\pm \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \quad \pm \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),$$

$$\pm \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \quad \pm \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right).$$

Question 2. Consider the map $\eta: \mathbf{S}^2 \to \mathbf{R}^4$ such that

$$\eta(u, v, w) = (u^2 - v^2, uv, uw, vw),$$

where all points (u, v, w) on the sphere satisfy $u^2 + v^2 + w^2 = 1$. Show that $\eta(u, v, w) = \eta(u', v', w')$ if and only if $(u, v, w) = \pm(u', v', w')$, hence η defines a one-to one map from \mathbb{RP}_2 to its image in \mathbb{R}^4 . Show also that the image of η is a *proper* subset of $F^{-1}(0)$ for the map $F: \mathbb{R}^4 \to \mathbb{R}^2$ such that

$$F(x, y, z, t) = (y(z^{2} - t^{2}) - xzt, y^{2}z^{2} + y^{2}t^{2} + z^{2}t^{2} - yzt).$$
Proof. Let $(u, v, w), (u', v', w') \in \mathbf{S}^{2}$. If $(u, v, w) = (u', v', w')$, then trivially $\eta(u, v, w) = \eta(u', v', w')$. Also if $(u, v, w) = -(u', v', w')$, then
 $\eta(u', v', w') = \eta(-u, -v, -w)$
 $= ((-u)^{2} - (-v)^{2}, (-u)(-v), (-u)(-w), (-v)(-w))$
 $= (u^{2} - v^{2}, uv, uw, vw)$
 $= \eta(u, v, w).$

Conversely, suppose $\eta(u, v, w) = \eta(u', v', w')$. Then we have the following equalities: $u^2 - v^2 = u'^2 - v'^2$,

$$uv = u'v',$$

 $uw = u'w',$
 $vw = v'w'.$

Notice that

 $\begin{array}{l} (u^2 - v^2)^2 + 4(uv)^2 = u^4 - 2u^2v^2 + v^4 + 4u^2v^2 = u^4 + 2u^2v^2 + v^4 = (u^2 + v^2)^2,\\ \text{whence from } u^2 - v^2 = u'^2 - v'^2 \text{ and } uv = u'v' \text{ we obtain}\\ u^2 + v^2 = u'^2 + v'^2.\\ \text{Adding this to } u^2 - v^2 = u'^2 - v'^2 \text{ we get}\\ 2u^2 = 2u'^2, \quad \Rightarrow \quad u = \pm u'.\\ \text{Therefore}\\ v^2 = v'^2, \quad \Rightarrow \quad v = \pm v'.\\ \text{Since } (u, v, w), (u', v', w') \in \mathbf{S}^2, \text{ we have that}\\ u^2 + v^2 + w^2 = 1 = u'^2 + v'^2 + w'^2 = 1, \end{array}$

and so

 $w = \pm w'$.

Thus

$$u = \alpha u', \quad v = \beta v', \quad w = \gamma w'$$

for some $\alpha, \beta, \gamma = \pm 1$.

We claim that one can always assume that $\alpha = \beta = \gamma$. Consider two cases. 1) Suppose there are two non-zero coordinates, say $u, v \neq 0$. Then the corresponding coefficients coincides $\alpha = \beta$. Indeed,

 $uv = u'v' = \alpha u\beta v, \quad \Rightarrow \quad 1 = \alpha\beta, \quad \Rightarrow \quad \alpha = \beta.$ Now if w = 0, then $w' = \gamma w = 0$, and so $(u', v', w') = (\alpha u, \alpha v, 0) = \alpha \cdot (u, v, 0) = \alpha \cdot (u, v, w).$ If $w \neq 0$, then $\alpha = \beta = \gamma.$ 2) Suppose two of coordinates (u, v, w) are zero, say, let v = w = 0, and $u \neq 0$. Then v' = w' = 0

0, and $u' = \pm u$, so

 $(u', v', w') = (\pm u, 0, 0) = \pm (u, 0, 0) = \pm (u, v, w).$ Thus $\eta(u, v, w) = \eta(u', v', w')$ if and only if $(u, v, w) = \pm (u', v', w').$

Let us prove that the image of η is a proper subset of $F^{-1}(0)$ for the map $F: \mathbf{R}^4 \to \mathbf{R}^2$ defined by

 $F(x, y, z, t) = (y(z^{2} - t^{2}) - xzt, y^{2}z^{2} + y^{2}t^{2} + z^{2}t^{2} - yzt).$

It suffices to prove that $F \circ \eta$: $\mathbf{S}^2 \to \mathbf{R}^2$ a constant map equal to 0. Indeed, since $u^2 + v^2 + w^2 = 1$, we obtain that

$$F \circ \eta(u, v, w) = F(u^{2} - v^{2}, uv, uw, vw)$$

= $(uv((uw)^{2} - (vw)^{2}) - (u^{2} - v^{2})uwvw,$
 $(uv)^{2}(uw)^{2} + (uv)^{2}(vw)^{2} + (uw)^{2}(vw)^{2} - uvuwvw)$
= $(u^{3}vw^{2} - uv^{3}w^{2} - u^{3}vw^{2} + uv^{3}w^{2},$
 $u^{4}v^{2}w^{2} + u^{2}v^{4}w^{2} + u^{2}v^{2}w^{4} - u^{2}v^{2}w^{2})$
= $(0, (v^{2} + u^{2} + w^{2} - 1)u^{2}v^{2}w^{2}) = (0,0).$