Sample: Differential Geometry - Mathematics Assignment

Question 1. Steiner's Roman surface is defined as the image of the map

$$
F: \mathbf{R} \mathbf{P}_{2} \rightarrow \mathbf{R}^{3}
$$

induced by the map $\hat{F}: \mathbf{S}^{2} \rightarrow \mathbf{R}^{3}$ such that

$$
\widehat{F}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right)
$$

Show that F fails to be an immersion at six points on $\mathbf{R P}_{2}$.
Proof. Let

$$
\mathbf{S}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

be the unit sphere in \mathbf{R}^{3}. Then by definition the projective plane $\mathbf{R} \mathbf{P}_{2}$ is the space of pairs of antipodal points of \mathbf{S}^{2}, that is the factor-space of \mathbf{S}^{2} by the following equivalence relation:

$$
\left(x_{1}, x_{2}, x_{3}\right):\left(-x_{1},-x_{2},-x_{3}\right)
$$

Let us prove that \hat{F} induces a certain map $\mathbf{R P}_{2} \rightarrow \mathbf{R}^{3}$.
Let $\alpha: \mathbf{S}^{2} \rightarrow \mathbf{R} \mathbf{P}_{2}$ be the factor map.
Since $\left(-x_{i}\right)\left(-x_{j}\right)=x_{i} x_{j}$ it follows that

$$
\begin{aligned}
& \hat{F}\left(-x_{1},-x_{2},-x_{3}\right)=\left(-x_{2}\left(-x_{3}\right),-x_{1}\left(-x_{3}\right),-x_{1}\left(-x_{2}\right)\right) \\
& \quad=\left(x_{2} x_{3}, x_{1} x_{3}, x_{1} x_{2}\right) \\
& \quad=\widehat{F}\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

Thus \hat{F} constant of equivalence class, and so it induces a map $F: \mathbf{R P}_{2} \rightarrow \mathbf{R}^{3}$ such that $\hat{F}=F$ 。 α.
Now let us check that F is an immersion. First we recall the definition of an immersion.
Let M, N are smooth two manifolds, $f: M \rightarrow N$ be a C^{1} map, and $x \in M$. Then f is an immersion at x if the tangent map $T_{x} f: T_{x} M \rightarrow T_{f(x)} N$ is injective. Suppose $\operatorname{dim} M=m$ and $\operatorname{dim} N=n$, and we choose local coordinates $\left(x_{1}, \ldots, x_{m}\right)$ on M at x and $\left(y_{1}, \ldots, y_{n}\right)$ on N at $f(x)$. Then f is an immersion at x if the Jacobi matrix of f at x (consisting of partial derivatives of coordinate functions of f) has rank m.
Evidently, a composition of immersions is an immersion as well.
Notice that the factor map $\alpha: \mathbf{S}^{2} \rightarrow \mathbf{R} \mathbf{P}_{2}$ is local diffeomorphism, so the tangent map α at each point $q \in \mathbf{S}^{2}$ is an isomorphism, and so α is an immersion. Thus in order to find points on $\mathbf{R P}_{2}$ at which F is not an immersion we should find points on \mathbf{S}^{2} at which \hat{F} is not an immersion and take their images in $\mathbf{R} \mathbf{P}_{2}$.
Moreover, we can extend \hat{F} to the map $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by the same formula. Then the Jacobi matrix of \hat{F} is equal to

$$
J(\hat{F})=\left(\begin{array}{lll}
0 & x_{3} & x_{2} \\
x_{3} & 0 & x_{1} \\
x_{2} & x_{1} & 0
\end{array}\right)
$$

and its determinant is

$$
|J(\hat{F})|=\left|\begin{array}{lll}
0 & x_{3} & x_{2} \\
x_{3} & 0 & x_{1} \\
x_{2} & x_{1} & 0
\end{array}\right|=-x_{1} x_{2} x_{3}-x_{1} x_{2} x_{3}=-2 x_{1} x_{2} x_{3}
$$

Let $q=\left(x_{1}, x_{2}, x_{3}\right)$. Then $|J(\widehat{F})(q)| \neq 0$ if and only if all coordinates (x_{1}, x_{2}, x_{3}) are non-zero, i.e. the point q does not belongs to the coordinate planes $x y, y z$, and $x z$. At each of these points the tangent map

$$
T_{q} \hat{F}: T_{q} \mathbf{R}^{3} \rightarrow T_{\hat{F}(q)} \mathbf{R}^{3}
$$

is an isomorphism. In particular, if in addition $q \in \mathbf{S}^{2}$, the restriction of $T_{q} \hat{F}$ to the tangent plane $T_{q} \mathbf{S}^{2}$ is injective, whence \hat{F} is an immersion at q. Therefore at the corresponding point $\alpha(q) \in$ $\mathbf{R} \mathbf{P}_{2}$ the map F is an immersion as well.

Suppose one of coordinates of q is zero. Not loosing generality assume that $x_{1}=0$. As $x_{1}^{2}+x_{2}+$ $x_{3}^{2}=1$, it follows that $x_{2}^{2}+x_{3}^{2}=1$, whence either x_{2} or x_{3} is non-zero.
Then the Jacobi matrix at q is

$$
J(\hat{F})(q)=\left(\begin{array}{lll}
0 & x_{3} & x_{2} \\
x_{3} & 0 & 0 \\
x_{2} & 0 & 0
\end{array}\right)
$$

and its rank (as of a map $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$) is 2 , as at least one of the following 2×2-minores is non-zero:

$$
\left|\begin{array}{ll}
0 & x_{3} \\
x_{3} & 0
\end{array}\right|=-x_{3}^{2}, \quad\left|\begin{array}{ll}
0 & x_{2} \\
x_{2} & 0
\end{array}\right|=-x_{2}^{2}
$$

Now the us find intersection of the null space of matrix $J(\hat{F})(q)$ with the tangent space $T_{q} \mathbf{S}^{2}$. Then the restriction of \widehat{F} to \mathbf{S}^{2} is an immersion if and only if that intersection is non-zero.
Suppose the tangent vector $\xi=(a, b, c) \in T_{q} \mathbf{R}^{3}$ belongs to the null space of $J(\hat{F})(q)$. Thus

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=J(\hat{F})(p) \cdot \xi=\left(\begin{array}{lll}
0 & x_{3} & x_{2} \\
x_{3} & 0 & 0 \\
x_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
b x_{3}+c x_{2} \\
a x_{2} \\
a x_{3}
\end{array}\right)
$$

As either x_{2} or x_{3} is non-zero, it follows that $a=0$ and $b x_{3}+c x_{2}=0$. Whence the null space of $J(\hat{F})(q)$ is spanned by the following vector

$$
\eta=\left(\begin{array}{l}
0 \\
-x_{2} \\
x_{3}
\end{array}\right)
$$

The restriction of \hat{F} to \mathbf{S}^{2} at q is not an immersion if and only if η belongs to the tangent space $T_{q} \mathbf{S}^{2}$ of \mathbf{S}^{2} at q. The latter condition means that η is orthogonal to the vector $\vec{q} \in \mathbf{R}^{3}$, so their scalar product is zero:

$$
\langle\eta, \vec{q}\rangle=0=\left(0,-x_{2}, x_{3}\right) \cdot\left(0, x_{2}, x_{3}\right)=0 \cdot 0-x_{2} x_{2}+x_{3} x_{3}=-x_{2}^{2}+x_{3}^{2}
$$

It then follows that

$$
x_{2}^{2}=x_{3}^{2}, \quad \Rightarrow \quad x_{2}= \pm x_{3}
$$

As $x_{2}^{2}+x_{3}^{2}=1$, we obtain that

$$
x_{2}^{2}=x_{3}^{2}=\frac{1}{2}, \quad \Rightarrow \quad x_{2}= \pm \frac{1}{\sqrt{2}}, \quad x_{3}=\frac{1}{\sqrt{2}}
$$

Thus there are the 4 points on \mathbf{S}^{2} with x_{0} at which \hat{F} is not an immersion:

$$
\begin{aligned}
& X_{1}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \quad X_{2}=\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right), \\
& X_{3}=\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right), \quad X_{4}=\left(0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) .
\end{aligned}
$$

Since $X_{1}=-X_{2}$ they define the same point $\alpha\left(X_{1}\right)=\alpha\left(X_{2}\right)$ on $\mathbf{R} \mathbf{P}_{2}$, and at this point the map F is not an immersion. The same statement hold for the pair X_{3} and X_{4}.
Thus we have found two points on $P R^{2}$ with $x_{1}=0$ at which F is not an immersion.
Due to the symmetry, in each of the cases $x_{2}=0$ and $x_{3}=0$ we also have 2 non-immersion points, and so the map F has the following six points at which it is not an immersion:

$$
\begin{array}{ll}
\pm\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), & \pm\left(0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
\pm\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), & \pm\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \\
\pm\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), & \pm\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)
\end{array}
$$

Question 2. Consider the map $\eta: \mathbf{S}^{2} \rightarrow \mathbf{R}^{4}$ such that

$$
\eta(u, v, w)=\left(u^{2}-v^{2}, u v, u w, v w\right)
$$

where all points (u, v, w) on the sphere satisfy $u^{2}+v^{2}+w^{2}=1$. Show that $\eta(u, v, w)=$ $\eta\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ if and only if $(u, v, w)= \pm\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$, hence η defines a one-to one map from $\mathbf{R P}_{2}$ to its image in \mathbf{R}^{4}. Show also that the image of η is a proper subset of $F^{-1}(0)$ for the map $F: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ such that

$$
F(x, y, z, t)=\left(y\left(z^{2}-t^{2}\right)-x z t, y^{2} z^{2}+y^{2} t^{2}+z^{2} t^{2}-y z t\right)
$$

Proof. Let $(u, v, w),\left(u^{\prime}, v^{\prime}, w^{\prime}\right) \in \mathbf{S}^{2}$. If $(u, v, w)=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$, then trivially $\eta(u, v, w)=$ $\eta\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$. Also if $(u, v, w)=-\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$, then

$$
\begin{aligned}
& \eta\left(u^{\prime}, v^{\prime}, w^{\prime}\right)=\eta(-u,-v,-w) \\
& \quad=\left((-u)^{2}-(-v)^{2},(-u)(-v),(-u)(-w),(-v)(-w)\right) \\
& \quad=\left(u^{2}-v^{2}, u v, u w, v w\right) \\
& \quad=\eta(u, v, w) .
\end{aligned}
$$

Conversely, suppose $\eta(u, v, w)=\eta\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$. Then we have the following equalities:

$$
\begin{gathered}
u^{2}-v^{2}=u^{\prime 2}-v^{\prime 2} \\
u v=u^{\prime} v^{\prime} \\
u w=u^{\prime} w^{\prime} \\
v w=v^{\prime} w^{\prime}
\end{gathered}
$$

Notice that

$$
\left(u^{2}-v^{2}\right)^{2}+4(u v)^{2}=u^{4}-2 u^{2} v^{2}+v^{4}+4 u^{2} v^{2}=u^{4}+2 u^{2} v^{2}+v^{4}=\left(u^{2}+v^{2}\right)^{2}
$$

whence from $u^{2}-v^{2}=u^{\prime 2}-v^{\prime 2}$ and $u v=u^{\prime} v^{\prime}$ we obtain

$$
u^{2}+v^{2}=u^{\prime 2}+v^{\prime 2}
$$

Adding this to $u^{2}-v^{2}=u^{\prime 2}-v^{\prime 2}$ we get

$$
2 u^{2}=2 u^{\prime 2}, \quad \Rightarrow \quad u= \pm u^{\prime}
$$

Therefore

$$
v^{2}=v^{\prime 2}, \quad \Rightarrow \quad v= \pm v^{\prime}
$$

Since $(u, v, w),\left(u^{\prime}, v^{\prime}, w^{\prime}\right) \in \mathbf{S}^{2}$, we have that

$$
u^{2}+v^{2}+w^{2}=1=u^{\prime 2}+v^{\prime 2}+w^{\prime 2}=1
$$

and so

$$
w= \pm w^{\prime}
$$

Thus

$$
u=\alpha u^{\prime}, \quad v=\beta v^{\prime}, \quad w=\gamma w^{\prime}
$$

for some $\alpha, \beta, \gamma= \pm 1$.
We claim that one can always assume that $\alpha=\beta=\gamma$. Consider two cases.

1) Suppose there are two non-zero coordinates, say $u, v \neq 0$. Then the corresponding coefficients coincides $\alpha=\beta$. Indeed,

$$
u v=u^{\prime} v^{\prime}=\alpha u \beta v, \quad \Rightarrow \quad 1=\alpha \beta, \quad \Rightarrow \quad \alpha=\beta
$$

Now if $w=0$, then $w^{\prime}=\gamma w=0$, and so

$$
\left(u^{\prime}, v^{\prime}, w^{\prime}\right)=(\alpha u, \alpha v, 0)=\alpha \cdot(u, v, 0)=\alpha \cdot(u, v, w)
$$

If $w \neq 0$, then $\alpha=\beta=\gamma$.
2) Suppose two of coordinates (u, v, w) are zero, say, let $v=w=0$, and $u \neq 0$. Then $v^{\prime}=w^{\prime}=$ 0 , and $u^{\prime}= \pm u$, so

$$
\left(u^{\prime}, v^{\prime}, w^{\prime}\right)=(\pm u, 0,0)= \pm(u, 0,0)= \pm(u, v, w)
$$

Thus $\eta(u, v, w)=\eta\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ if and only if $(u, v, w)= \pm\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$.
Let us prove that the image of η is a proper subset of $F^{-1}(0)$ for the map $F: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ defined by

$$
F(x, y, z, t)=\left(y\left(z^{2}-t^{2}\right)-x z t, y^{2} z^{2}+y^{2} t^{2}+z^{2} t^{2}-y z t\right)
$$

It suffices to prove that $F \circ \eta: \mathbf{S}^{2} \rightarrow \mathbf{R}^{2}$ a constant map equal to 0 . Indeed, since $u^{2}+v^{2}+w^{2}=$ 1, we obtain that

$$
\begin{aligned}
& F \circ \eta(u, v, w)=F\left(u^{2}-v^{2}, u v, u w, v w\right) \\
&=\left(u v\left((u w)^{2}-(v w)^{2}\right)-\left(u^{2}-v^{2}\right) u w v w\right. \\
&\left.\quad(u v)^{2}(u w)^{2}+(u v)^{2}(v w)^{2}+(u w)^{2}(v w)^{2}-u v u w v w\right) \\
&=\left(u^{3} v w^{2}-u v^{3} w^{2}-u^{3} v w^{2}+u v^{3} w^{2}\right. \\
&\left.u^{4} v^{2} w^{2}+u^{2} v^{4} w^{2}+u^{2} v^{2} w^{4}-u^{2} v^{2} w^{2}\right) \\
&=\left(0,\left(v^{2}+u^{2}+w^{2}-1\right) u^{2} v^{2} w^{2}\right)=(0,0)
\end{aligned}
$$

