Sample: Electrodynamics - Electric Potential

Problem 2: Consider the distribution of point charges as shown in the diagram. Show that:
(a) the quadruple moment tensor is given by the following:

$$
Q=\frac{3}{2}\left(\begin{array}{ccc}
q l^{2} & 0 & 0 \\
0 & -q l^{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Solution: in the Cartesian coordinate system the coordinates of all the point charges are given by $q_{1}(+q) \rightarrow$
 $\left(\frac{l}{2}, 0,0\right), q_{2}(-q) \rightarrow\left(0,-\frac{l}{2}, 0\right), q_{3}(+q) \rightarrow\left(-\frac{l}{2}, 0,0\right), q_{4}(-q) \rightarrow\left(0, \frac{l}{2}, 0\right)$. Each of them is at the distance $r=\frac{l}{2}$ from the origin. The quadruple moment tensor is symmetric and its trace is equal to zero. That implies that we have to calculate only 5 components of this tensor. The components $Q_{i j}$ of the quadruple moment tensor are defined by

$$
Q_{i j}=\sum_{k=1}^{N} q_{k}\left(3 x_{i k} x_{j k}-\delta_{i j} r_{k}^{2}\right)
$$

Where $x_{i k}$ is the $x_{i}\left(i=2 \rightarrow x_{2}=y\right)$ coordinate of k-th charge. Let us calculate now the components of this matrix:

1) $Q_{x x}=Q_{11}=\sum_{k=1}^{N} q_{k}\left(3 x_{k} x_{k}-r_{k}^{2}\right)=+q\left(\frac{3 l^{2}}{4}-\frac{l^{2}}{4}\right)-q\left(0-\frac{l^{2}}{4}\right)+q\left(\frac{3 l^{2}}{4}-\frac{l^{2}}{4}\right)-$
$q\left(0-\frac{l^{2}}{4}\right)=\frac{3}{2} q l^{2}$.
2) $Q_{z z}=Q_{33}=\sum_{k=1}^{N} q_{k}\left(3 z_{k} z_{k}-r_{k}^{2}\right)=-\sum_{k=1}^{N} q_{k} \cdot r_{k}^{2}$ (for each charge $\mathrm{z}-$
compoent is 0$)=-\frac{l^{2}}{4}(+q-q+q-q)=0$.
3) $Q_{x x}+Q_{y y}+Q_{z z}=0 \Rightarrow Q_{y y}=Q_{22}=-Q_{x x}-Q_{z z}=-\frac{3}{2} q l^{2}$.
4) $Q_{x y}=Q_{y x}=Q_{12}=\sum_{k=1}^{N} q_{k} 3 x_{k} y_{k}=+3 q\left(\frac{l}{2} \cdot 0\right)-3 q\left(-\frac{l}{2} \cdot 0\right)+3 q\left(-\frac{l}{2} \cdot 0\right)-$ $3 q\left(0 \cdot \frac{l}{2}\right)=0$.
5) $Q_{x z}=Q_{z x}=Q_{13}=\sum_{k=1}^{N} q_{k} 3 x_{k} z_{k}=\sum_{k=1}^{N} q_{k}\left(3 x_{k} \cdot 0\right)=0$.
6) $Q_{y z}=Q_{z y}=Q_{23}=\sum_{k=1}^{N} q_{k} 3 y_{k} z_{k}=\sum_{k=1}^{N} q_{k}\left(3 y_{k} \cdot 0\right)=0$.

From this data we can reconstruct the quadruple moment tensor:

$$
\left.Q_{i j}=\begin{array}{ccc}
\frac{3}{2} q l^{2} & 0 & 0 \\
0 & -\frac{3}{2} q l^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\frac{3}{2}\left(\begin{array}{ccc}
q l^{2} & 0 & 0 \\
0 & -q l^{2} & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Answer: the quadruple moment tensor is

$$
Q_{i j}=\frac{3}{2}\left(\begin{array}{ccc}
q l^{2} & 0 & 0 \\
0 & -q l^{2} & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

(b) The quadruple potential is given (in spherical coordinates) by:

$$
\Phi^{(4)}=\frac{3}{4} k_{E} q l^{2} \cdot \frac{\sin ^{2} \theta \cos 2 \phi}{r^{3}} .
$$

Solution: the quadruple potential can be calculated from formula

$$
\Phi^{(4)}(x, y, z)=\sum_{i, j=1}^{3} \frac{k_{E} Q_{i j} x_{i} x_{j}}{2 r^{5}}
$$

Where $Q_{i j}$ is the quadruple moment tensor and x_{j} is the j-th component of the radius vector in the Cartesian system. Since there are only two nonzero components of $Q_{i j}$, the potential takes form

$$
\Phi^{(4)}(x, y, z)=\sum_{i, j=1}^{3} \frac{k_{E} Q_{i j} x_{i} x_{j}}{2 r^{5}}=\frac{k_{E}\left(Q_{11} x^{2}+Q_{22} y^{2}\right)}{2 r^{5}}=\frac{3 k_{E} q l^{2}\left(x^{2}-y^{2}\right)}{4 r^{5}}
$$

Let us now transform the Cartesian coordinates into spherical coordinates:

$$
\begin{aligned}
\Phi^{(4)}(r, \theta, \phi) & =\frac{3 k_{E} q l^{2}\left((r \sin \theta \cos \phi)^{2}-(r \sin \theta \sin \phi)^{2}\right)}{4 r^{5}} \\
& =\frac{3 k_{E} q l^{2} \sin ^{2} \theta\left(\cos ^{2} \phi-\sin ^{2} \phi\right)}{4 r^{3}}=\frac{3}{4} k_{E} q l^{2} \cdot \frac{\sin ^{2} \theta \cos 2 \phi}{r^{3}} .
\end{aligned}
$$

So finally we obtain the quadruple potential (in spherical coordinates):

$$
\Phi^{(4)}=\frac{3}{4} k_{E} q l^{2} \cdot \frac{\sin ^{2} \theta \cos 2 \phi}{r^{3}}
$$

Answer: the quadruple potential is given (in spherical system) by:

$$
\Phi^{(4)}(r, \theta, \phi)=\frac{3}{4} k_{E} q l^{2} \cdot \frac{\sin ^{2} \theta \cos 2 \phi}{r^{3}}
$$

(c) Sketch the potential as a function of angles θ and ϕ for a fixed r.

Solution: to sketch the potential $\Phi^{(4)}$ for fixed r it is convenient to introduce the dimensionless potential

$$
\phi(\theta, \phi)=\frac{r^{3}}{k_{E} q l^{2}} \cdot \Phi^{(4)}(\theta, \phi)=\frac{3}{4} \sin ^{2} \theta \cdot \cos 2 \phi
$$

We have plotted the potential $\phi(\theta, \phi)$ using Mathematica (Code: SphericalPlot3D[3/4 * $(\operatorname{Sin}[\theta])^{\wedge} 2 * \operatorname{Cos}[2 * \phi], \theta, \phi$, PlotStyle \rightarrow Directive[Red, Opacity[0.8]]]):

Problem 3: a hollow dielectric sphere (of I.i.h. material of dielectric constant ϵ and radii a and $b<a$) is in a uniform external filed \vec{E} in vacuum as shown. Try to justify the following forms for the potentials in three regions:

$$
\begin{gathered}
V_{1}=-E_{0} \cos \theta\left(r-\frac{A}{r^{2}}\right), \\
V_{2}=-E_{0} \cos \theta\left(B r-\frac{C}{r^{2}}\right), \\
V_{3}=-E_{0} D \cos \theta r
\end{gathered}
$$

and use them to show that electric field in the cavity $\left(\overrightarrow{E_{3}}\right)$ is uniform and is given by following expression:

$$
\overrightarrow{E_{3}}=\frac{9 \epsilon}{\left((\epsilon+2)(2 \epsilon+1)-2(\epsilon-1)^{2}\left(\frac{b}{a}\right)^{3}\right)} \vec{E} \text { (in Gaussian units) }
$$

Solution: we will provide all the calculations in the Gaussian units.

1) In all three regions the potentials V_{1}, V_{2}, V_{3} satisfy the Laplace equation $\Delta V=0$. Our system has azimuthal symmetry (this means that solutions does not depend on the angle ϕ). In this case the general solution of equation $\Delta V=0$ has the form

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

$P_{l}(\cos \theta)$ are Legendre polynomials in the variable of $\cos \theta: P_{0}(x)=1, P_{1}(x)=x \ldots$
Let us consider the potentials V_{1}, V_{2}, V_{3} more specifically:
a) The external field is $\vec{E}=E_{0} \cdot \hat{z}$, so the potential that corresponds to this field is

$$
\vec{E}=-\nabla V \Rightarrow V=-\int(\vec{E} \cdot d \vec{r})=-E_{0} \int d z=-E_{0} z
$$

In the spherical system this potential has the form $V=-E_{0} r \cos \theta$. For large $r(r \gg a)$ the potential V_{3} should look like the potential $V=-E_{0} r \cos \theta$. For large r the value of $\frac{B_{l}}{r^{l+1}}$ is negligible small, therefore

$$
\begin{gathered}
\sum_{l=0}^{\infty} A_{l} r^{l} \cdot P_{l}(\cos \theta)=-E_{0} r \cos \theta \\
A_{0}+A_{1} r \cos \theta+\sum_{l=2}^{\infty} A_{l} r^{l} \cdot P_{l}(\cos \theta)=-E_{0} r \cos \theta
\end{gathered}
$$

The Legendre polynomials form the linear independent system of functions, so this condition can be satisfied only when $l=1$ and

$$
\begin{gathered}
A_{l}=0(l \neq 1) \\
A_{1}=-E_{0}(l=1)
\end{gathered}
$$

The potential V_{3} the takes the form

$$
V_{3}(r, \theta)=\left(A_{1} r+\frac{B_{1}}{r^{2}}\right) \cdot P_{1}(\cos \theta)=\left(-E_{0} r+\frac{B_{1}}{r^{2}}\right) \cos \theta=-E_{0} \cos \theta\left(r-\frac{A}{r^{2}}\right),
$$

Where $A=\frac{B_{1}}{E_{0}}$.
b) The potential V is a continuous function on the boundary. That implies

$$
\begin{gathered}
V_{2}(a)=V_{1}(a) . \\
V_{2}(r, \theta)=\sum_{l=0}^{\infty}\left(B_{l} r^{l}+\frac{C_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
\end{gathered}
$$

From this boundary condition we get

$$
\sum_{l=0}^{\infty}\left(B_{l} a^{l}+\frac{C_{l}}{a^{l+1}}\right) P_{l}(\cos \theta)=-E_{0} \cos \theta\left(a-\frac{A}{a^{2}}\right)
$$

Again, since Legendre polynomials form the linear independent system of functions, this equality can be possible only if $l=1$ and

$$
\begin{aligned}
& B_{l}=0(l \neq 1) \\
& C_{l}=0(l \neq 1) .
\end{aligned}
$$

From these conditions we obtain the look of the potential V_{2} :

$$
V_{2}(r, \theta)=\left(B_{1} r+\frac{C_{1}}{r^{2}}\right) \cos \theta=V_{2}=-E_{0} \cos \theta\left(B r-\frac{C}{r^{2}}\right),
$$

Where $B_{1}=-E_{0} B$ and $C_{1}=E_{0} C$.
c) The potential in third region has the form

$$
V_{1}(r, \theta)=\sum_{l=0}^{\infty}\left(D_{l} r^{l}+\frac{E_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

In this case $E_{l}=0$ for all l-otherwise the potential will blow up at the origin. Thus

$$
V_{1}(r, \theta)=\sum_{l=0}^{\infty} D_{l} r^{l} P_{l}(\cos \theta)
$$

Using boundary condition $V_{3}(b)=V_{2}(b)$ we obtain:

$$
\sum_{l=0}^{\infty} D_{l} b^{l} P_{l}(\cos \theta)=D_{0}+D_{1} b \cos \theta+\sum_{l=2}^{\infty} D_{l} b^{l} P_{l}(\cos \theta)=-E_{0} \cos \theta\left(B b-\frac{C}{b^{2}}\right),
$$

From linear independency of $P_{l}(\cos \theta)$ we once again get: $l=1, D_{l}=0(l \neq 1)$.

$$
V_{1}(r, \theta)=D_{1} r \cos \theta=-E_{0} D r \cos \theta\left(D_{1}=-E_{0} D\right)
$$

Answer: the potentials in three regions are given by:

$$
\begin{array}{r}
V_{1}=-E_{0} \cos \theta\left(r-\frac{A}{r^{2}}\right), \\
V_{2}=-E_{0} \cos \theta\left(B r-\frac{C}{r^{2}}\right), \\
V_{3}=-E_{0} D \cos \theta r .
\end{array}
$$

2) In the expressions for the potentials appear four constants A, B, C, D that can be determined using boundary conditions. The electric field in the cavity is

$$
\overrightarrow{E_{3}}=-\nabla V_{3}=-\nabla\left(-E_{0} D \cos \theta r\right)=E_{0} \mathrm{D} \nabla z=E_{0} D \hat{z}=D \cdot \vec{E} .
$$

From this formula we can see that field in the cavity is constant and has the same direction as the external field. To determine this field fully we should find the unknown
coefficient D. We will find D using the boundary conditions. The potential itself is a continuous function on the boundary. This condition implies

$$
V_{3}(b)=V_{2}(b), \quad V_{2}(a)=V_{1}(a) .
$$

The second boundary condition has the deal with the first derivative of the potential on the boundary. Since there are no free charges on the surfaces of the hollow sphere, it takes form

$$
\frac{\partial V_{3}(b)}{\partial r}=\epsilon \frac{\partial V_{2}(b)}{\partial r}, \frac{\partial V_{1}(a)}{\partial r}=\epsilon \frac{\partial V_{2}(a)}{\partial r} .
$$

From first two conditions we obtain:

$$
\begin{aligned}
-E_{0} D \cos \theta b & =-E_{0} \cos \theta\left(B b-\frac{C}{b^{2}}\right) \Rightarrow \frac{C}{b^{3}}=B-D ; \\
-E_{0} \cos \theta\left(a-\frac{A}{a^{2}}\right) & =-E_{0} \cos \theta\left(B a-\frac{C}{a^{2}}\right) \Rightarrow B-1=\frac{C-A}{a^{3}} .
\end{aligned}
$$

From second one we get two additional relationships between constants A, B, C, D :

$$
\begin{aligned}
-E_{0} D \cos \theta & =-\epsilon E_{0} \cos \theta\left(B+\frac{2 C}{b^{3}}\right)
\end{aligned} \Rightarrow \frac{D}{\epsilon}=B+\frac{2 C}{b^{3}}, ~=1+\frac{2 A}{a^{3}}=\epsilon B+\frac{2 \epsilon C}{a^{3}} .
$$

From the system of equations

$$
\frac{C}{b^{3}}=B-D, \quad B-1=\frac{C-A}{a^{3}}, \quad \frac{D}{\epsilon}=B+\frac{2 C}{b^{3}}, \quad 1+\frac{2 A}{a^{3}}=\epsilon B+\frac{2 \epsilon C}{a^{3}}
$$

We can determine the coefficient D. Using first and third equation we can express B as a function of D :

$$
B=\frac{1+2 \epsilon}{3 \epsilon} \cdot D
$$

From first equation we can obtain now C as a function of D :

$$
C=\frac{1-\epsilon}{3 \epsilon} b^{2} \cdot D
$$

Substituting B, C in the second equation we get A as a function of D :

$$
A=a^{3}\left(1-\frac{(1+2 \epsilon)+(\epsilon-1)\left(\frac{b}{a}\right)^{3}}{3 \epsilon} \cdot D\right)
$$

Substituting A, B, C in the fourth equation we obtain the value of D :

$$
\begin{gathered}
1+\frac{2 A}{a^{3}}=\epsilon B+\frac{2 \epsilon C}{a^{3}} \\
3-\frac{2 D}{3 \epsilon}\left((1+2 \epsilon)+(\epsilon-1)\left(\frac{b}{a}\right)^{3}\right)=\frac{1+2 \epsilon}{3} \cdot D+\frac{2(1-\epsilon)}{3}\left(\frac{b}{a}\right)^{3} \cdot D \\
3=\frac{D}{3 \epsilon}\left((1+2 \epsilon)(\epsilon+2)-2\left(\frac{b}{a}\right)^{3}(\epsilon-1)^{2}\right) \\
D=\frac{9 \epsilon}{(1+2 \epsilon)(\epsilon+2)-2\left(\frac{b}{a}\right)^{3}(\epsilon-1)^{2}}
\end{gathered}
$$

Finally the field in the cavity is

$$
\overrightarrow{E_{3}}=\frac{9 \epsilon}{(1+2 \epsilon)(\epsilon+2)-2\left(\frac{b}{a}\right)^{3}(\epsilon-1)^{2}} \cdot \vec{E} .
$$

Answer: field in the cavity is $\overrightarrow{E_{3}}=\frac{9 \epsilon}{(1+2 \epsilon)(\epsilon+2)-2\left(\frac{b}{a}\right)^{3}(\epsilon-1)^{2}} \cdot \vec{E}$, where $\vec{E}=E_{0} \cdot \hat{z}$ is the uniform external field.

