Sample: Differential Calculus Equations - Differential Calculus Assignment

1. A thermometer reading $70^{\circ} \mathrm{F}$ is placed in an oven preheated to a constant temperature. Through a glass window in the oven door, an observer records that the thermometer reads $110^{\circ} \mathrm{F}$ after $\frac{1}{2}$ minute and $145^{\circ} \mathrm{F}$ after 1 minute. How hot is oven? Please show all your work including setting up your differential equations.

Solution:

If T is temperature, then by Newton's law

$$
\frac{d T}{d t}=-k\left(T-T_{0}\right)
$$

Where
T_{o} - is temperature of oven
Integrate left side of equation from $70^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$ and right side from 0 to $\frac{1}{2}$

$$
\begin{gather*}
\int_{70}^{110} \frac{d T}{T-T_{o}}=\int_{0}^{1 / 2}-k d t \\
\left.\ln \left(T-T_{o}\right)\right|_{70} ^{110}=-\left.k t\right|_{0} ^{1 / 2} \\
\ln \left(110-T_{o}\right)-\ln \left(70-T_{o}\right)=-k\left(\frac{1}{2}-0\right) \\
2 \ln \frac{110-T_{o}}{70-T_{o}}=-k \\
k=-2 \ln \frac{T_{o}-110}{T_{o}-70} \tag{1}
\end{gather*}
$$

Integrate left side of equation from $110^{\circ} \mathrm{F}$ to $145^{\circ} \mathrm{F}$ and right side from $\frac{1}{2}$ to 1

$$
\begin{gathered}
\int_{110}^{145} \frac{d T}{T-T_{o}}=\int_{1 / 2}^{1}-k d t \\
\left.\ln \left(T-T_{o}\right)\right|_{110} ^{145}=-\left.k t\right|_{\frac{1}{2}} ^{1} \\
\ln \left(145-T_{o}\right)-\ln \left(110-T_{o}\right)=-k\left(1-\frac{1}{2}\right)
\end{gathered}
$$

$$
\begin{gather*}
2 \ln \frac{145-T_{o}}{110-T_{o}}=-k \\
k=-2 \ln \frac{T_{o}-145}{T_{o}-110} \tag{2}
\end{gather*}
$$

Equate (1) to (2)

$$
\begin{gathered}
-2 \ln \frac{T_{o}-110}{T_{o}-70}=-2 \ln \frac{T_{o}-145}{T_{o}-110} \\
\frac{T_{o}-110}{T_{o}-70}=\frac{T_{o}-145}{T_{o}-110} \\
\left(T_{o}-110\right)^{2}=\left(T_{o}-70\right)\left(T_{o}-145\right) \\
T_{o}^{2}-220 T_{o}+12100=T_{o}^{2}-215 T_{o}+10150 \\
5 T_{o}=1950 \\
T_{o}=390^{\circ} \mathrm{F}
\end{gathered}
$$

Answer: the temperature of oven is $T_{o}=390^{\circ} \mathrm{F}$
2. Solve the given initial-value problem.

$$
\begin{gathered}
y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=0 \\
y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=1
\end{gathered}
$$

Solution:

Write down the characteristic equation for differential equation and solve it:

$$
\begin{gathered}
r^{3}+2 r^{2}-5 r-6=0 \\
r_{1}=-3, r_{2}=-1, r_{3}=2
\end{gathered}
$$

So, the general solution will be

$$
y=C_{1} e^{-3 x}+C_{2} e^{-x}+C_{3} e^{2 x}
$$

To find initial-value problem need to find coefficients C_{1}, C_{2}, C_{3}
Find first and second derivatives of general solution

$$
y^{\prime}=-3 C_{1} e^{-3 x}-C_{2} e^{-x}+2 C_{3} e^{2 x}
$$

$$
y^{\prime \prime}=9 C_{1} e^{-3 x}+C_{2} e^{-x}+4 C_{3} e^{2 x}
$$

Plug in the initial conditions

$$
\begin{gathered}
y(0)=0=C_{1}+C_{2}+C_{3} \\
y^{\prime}(0)=0=-3 C_{1}-C_{2}+2 C_{3} \\
y^{\prime \prime}(0)=1=9 C_{1}+C_{2}+4 C_{3}
\end{gathered}
$$

Solve a system of three equations and three unknowns:

$$
\left\{\begin{array}{c}
C_{1}+C_{2}+C_{3}=0 \\
-3 C_{1}-C_{2}+2 C_{3}=0 \\
9 C_{1}+C_{2}+4 C_{3}=1
\end{array}\right.
$$

Add first and second equations and second and third equations:

$$
\left\{\begin{array}{c}
-2 C_{1}+3 C_{3}=0 \\
-3 C_{1}-C_{2}+2 C_{3}=0 \\
6 C_{1}+6 C_{3}=1
\end{array}\right.
$$

Multiply first equation by 3 and add it to third:

$$
\left\{\begin{array}{c}
15 C_{3}=1 \\
-3 C_{1}-C_{2}+2 C_{3}=0 \\
6 C_{1}+6 C_{3}=1
\end{array}\right.
$$

So,

$$
\begin{gathered}
C_{3}=\frac{1}{15} \\
C_{1}=\frac{1}{6}-C_{3}=\frac{1}{6}-\frac{1}{15}=\frac{1}{10} \\
C_{2}=-C_{1}-C_{3}=-\frac{1}{15}-\frac{1}{10}=-\frac{1}{6}
\end{gathered}
$$

The solution to the initial-value problem is then,

$$
y=\frac{1}{10} e^{-3 x}-\frac{1}{6} e^{-x}+\frac{1}{15} e^{2 x}
$$

Answer: $y=\frac{1}{10} e^{-3 x}-\frac{1}{6} e^{-x}+\frac{1}{15} e^{2 x}$
3. Solve the given differential equation by undetermined coefficients.

$$
y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=5-e^{x}+e^{2 x}
$$

Solution:

The general solution will be of the form,

$$
y(x)=y_{c}(x)+Y_{p}(x)
$$

Where
$y_{c}(x)$ - is the complementary solution
$Y_{p}(x)$ - is the particular solution.
Complementary solution comes from solving,

$$
y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

Write down the characteristic equation for differential equation and solve it,

$$
\begin{aligned}
& r^{3}-r^{2}-4 r+4=0 \\
& r_{1}=-2, r_{2}=1, r_{3}=2
\end{aligned}
$$

So, the general solution will be

$$
y=C_{1} e^{-2 x}+C_{2} e^{x}+C_{3} e^{2 x}
$$

The particular solution will be

$$
Y_{p}(x)=A+B x e^{x}+C x e^{2 x}
$$

To find coefficients A, B, C need to differentiate particular solution and plug into the differential equation,

$$
\begin{gathered}
Y_{p}^{\prime}=B e^{x}+B x e^{x}+C e^{2 x}+2 C x e^{2 x}=B e^{x}(1+x)+C e^{2 x}(1+2 x) \\
Y_{p}^{\prime \prime}=B e^{x}(1+x)+B e^{x}+2 C e^{2 x}(1+2 x)+2 C e^{2 x}=B e^{x}(2+x)+4 C e^{2 x}(1+x) \\
Y_{p}^{\prime \prime \prime}=B e^{x}(3+x)+4 C e^{2 x}(3+2 x)
\end{gathered}
$$

Plug derivatives into the differential equation

$$
\begin{gathered}
B e^{x}(3+x)+4 C e^{2 x}(3+2 x)-\left(B e^{x}(2+x)+4 C e^{2 x}(1+x)\right)-4\left(B e^{x}(1+x)+C e^{2 x}(1+2 x)\right) \\
+4\left(A+B x e^{x}+C x e^{2 x}\right)=5-e^{x}+e^{2 x} \\
4 A+e^{x}(3 B+B x-2 B-B x-4 B-4 B x+4 B x) \\
+e^{2 x}(12 C+8 C x-4 C-4 C x-4 C-8 C x+4 C x)=5-e^{x}+e^{2 x} \\
4 A-3 B e^{x}+4 C e^{2 x}=5-e^{x}+e^{2 x}
\end{gathered}
$$

So,

$$
\begin{gathered}
A=\frac{5}{4}, B=\frac{1}{3}, C=\frac{1}{4} \\
Y_{p}(x)=\frac{5}{4}+\frac{x}{3} e^{x}+\frac{x}{4} e^{2 x}
\end{gathered}
$$

Therefore solution will be

$$
y(x)=C_{1} e^{-2 x}+C_{2} e^{x}+C_{3} e^{2 x}+\frac{5}{4}+\frac{x}{3} e^{x}+\frac{x}{4} e^{2 x}
$$

Answer: $y(x)=C_{1} e^{-2 x}+C_{2} e^{x}+C_{3} e^{2 x}+\frac{5}{4}+\frac{x}{3} e^{x}+\frac{x}{4} e^{2 x}$

