Sample: Calculus - Rules for Derivatives

1. Find the derivative for the following:
a. $y=x^{2} e^{x}$
b. $y=\left(e^{x}+2\right)^{\frac{3}{2}}$
c. $y=e^{-3 x}$
d. $y=\frac{e^{x}-e^{-x}}{2}$

Solution

a. Use the product rule:
$y^{\prime}=2 x e^{x}+x^{2} e^{x}$
b. Using the chain rule:
$y^{\prime}=\frac{3}{2}\left(e^{x}+2\right)^{\left(\frac{3}{2}-1\right)} \cdot e^{x}=\frac{3}{2} e^{x \sqrt{e^{x}+2}}$
c. Let use the chain rule:
$y^{\prime}=-3 e^{-3 x}$
d. Let factor out the constant $\frac{1}{2}$:
$y=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
Differentiate the sum term by term, using chain rule for the second term:
$y^{\prime}=\frac{1}{2}\left(e^{x}-\left(-e^{-x}\right)\right)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
Answer
a. $2 x e^{x}+x^{2} e^{x}$
b. $\frac{3}{2} e^{x} \sqrt{e^{x}+2}$
c. $-3 e^{-3 x}$
d. $\frac{1}{2}\left(e^{x}+e^{-x}\right)$
2. The present value of a building in the downtown area is given by the function

$$
P(t)=300,000 e^{-0.09 t+\frac{\sqrt{t}}{2}} \text { for } 0 \leq t \leq 10
$$

Find the optimal present value of the building. (Hint: Use a graphing utility to graph the function, $P(t)$, and find the value of t_{0} that gives a point on the graph, $\left(t_{0}, P\left(t_{0}\right)\right)$, where the slope of the tangent line is 0 .)

Solution

Graph the function and find the point, where the slope of the tangent line is 0 (line is parallel to the x-axis):

Substitute $t=7.7$ to calculate the optimal present value of the building:
$P(t)=300,000 e^{-0.09 \cdot 7.7+\frac{\sqrt{7.7}}{2}} \approx 600,778$

Answer

600,778
3. Find the equation of the line tangent to

$$
f(x)=x e^{-x}
$$

at the point where $x=0$. What does this tell you about the behavior of the graph when $x=0$?

Solution

$y-f\left(x_{0}\right)=m\left(x-x_{0}\right)$, where $m=f^{\prime}\left(x_{0}\right)$
$f(0)=0 \cdot 1=0$
$f^{\prime}(x)=e^{-x}-x e^{-x}$
$f^{\prime}(0)=1-0 \cdot 1=1$
Substitute all values in the equation:
$y-0=1(x-0)$
$y=x$
It means that the function is increasing and curve is rising up to the right.

Answer

$y=x$

