Sample: Integral Calculus - Area and Integral

Question 1

a) Consider the definite integral
$\int_{-1}^{1}\left(x^{3}+3 x^{2}\right) d x$
i) State the antiderivative of the integral $f(x)=x^{3}+3 x^{2}$

IMPORTANT: DO NOT add a "+ c". It is not necessary when finding an antiderivative to evaluate a definite integral.

Answer: $F(x)=\frac{x^{4}}{4}+x^{3}$.
ii) Use your answer from i) to evaluate the definite integral

$$
\int_{-1}^{1}\left(x^{3}+3 x^{2}\right) d x
$$

Answer: $\int_{-1}^{1}\left(x^{3}+3 x^{2}\right) d x=2$.
b) Consider the definite integral
$\int_{0}^{1} 6 x^{2}\left(x^{3}+1\right)^{4} d x$
i) State the appropriate substitution which can be used to evaluate this integral.

Answer: $u=\left(x^{3}+1\right)$.
ii) State the values of the integration bounds in the new variable

Answer: $x=0 \Rightarrow u=1$

$$
x=1 \Rightarrow u=2
$$

iii) Use your answers from i) and ii) to evaluate the definite integral

$$
\int_{0}^{1} 6 x^{2}\left(x^{3}+1\right)^{4} d x
$$

Answer: $\int_{0}^{1} 6 x^{2}\left(x^{3}+1\right)^{4} d x=\frac{62}{5}$.

Question 2

Consider the shaded region in the figure below.

a) The area of the shaded region can be expressed in the form of a definite integral

$$
\int_{a}^{b} f(x) d x
$$

Specify the values of a and b , and the expression for f.

Answer:

$$
\begin{gathered}
a=-1 \\
b=1 \\
f(x)=x^{3}+3 x+4
\end{gathered}
$$

b) State the antiderivative of the integrand in a).

IMPORTANT: DO NOT add a "+ c". It is not necessary when finding an antiderivative to evaluate a definite integral.

Answer:

$$
F(x)=\frac{x^{4}}{4}+\frac{3 x^{2}}{2}+4 x
$$

c) Use your answers from a) and b) to determine the area of the shaded region.

Answer: \quad Area $=8$.

Question 3

Differentiate the following functions with respect to x .
a) $f(x)=\int_{0}^{x} \frac{1}{t+1} d t$.

Answer: $\frac{d f}{d x}=\frac{1}{x+1}$.
b) $f(x)=\int_{1}^{2 x^{2}} \frac{1}{t+1} d t$.

Answer: $\frac{d f}{d x}=\frac{4 x}{2 x^{2}+1}$.

