3) Often we have a set of data from an experiment and we want to fit a straight line (or other curve) to that data. A common approach to this is to use the method of least squares to find the line of the best fit. This approach involves solving a linear system called the normal equation.

An experiment was conducting with the following results

| x | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| y | -0.18 | 2.90 | 7.12 | 14.91 | 23.63 |

We would like to determine if $x$ and $y$ have a linear or quadratic relationship.
(a) Research using the method of least squares to find the line of best fit to find an expression for the normal equation.

Suppose we want to fit the data using the curve

$$
y=a_{0} f_{0}(x)+a_{1} f_{1}(x)+a_{2} f_{2}(x)
$$

Substituting data entries into this equation we get:

$$
y_{i}=a_{0} f_{0}\left(x_{i}\right)+a_{1} f_{1}\left(x_{i}\right)+a_{2} f_{2}\left(x_{i}\right), i=1,2, \ldots, N
$$

Let's find sum of squared differences:

$$
F\left(a_{0}, a_{a}, a_{2}\right)=\sum_{i=1}^{N}\left(y_{i}-a_{0} f_{0}\left(x_{i}\right)-a_{1} f_{1}\left(x_{i}\right)-a_{2} f_{2}\left(x_{i}\right)\right)^{2}
$$

Let's minimize this function by parameters $a_{0}, a_{1}, a_{2}$.

$$
\begin{aligned}
& \frac{\partial F}{\partial a_{0}}=2 \sum_{i=1}^{N}\left(y_{i}-a_{0} f_{0}\left(x_{i}\right)-a_{1} f_{1}\left(x_{i}\right)-a_{2} f_{2}\left(x_{i}\right)\right)\left(-f_{0}\left(x_{i}\right)\right)=0 \\
& \frac{\partial F}{\partial a_{1}}=2 \sum_{i=1}^{N}\left(y_{i}-a_{0} f_{0}\left(x_{i}\right)-a_{1} f_{1}\left(x_{i}\right)-a_{2} f_{2}\left(x_{i}\right)\right)\left(-f_{1}\left(x_{i}\right)\right)=0 \\
& \frac{\partial F}{\partial a_{2}}=2 \sum_{i=1}^{N}\left(y_{i}-a_{0} f_{0}\left(x_{i}\right)-a_{1} f_{1}\left(x_{i}\right)-a_{2} f_{2}\left(x_{i}\right)\right)\left(-f_{2}\left(x_{i}\right)\right)=0
\end{aligned}
$$

This system of equations determines coefficients $a_{0}, a_{1}, a_{2}$ of best fit line.
(b) Use the normal equation to fit a straight line $y=a_{0}+a_{1} x$ to the data. In case

$$
y=a_{0}+a_{1} x
$$

we have:

$$
f_{0}(x)=1 ; f_{1}(x)=x
$$

Thus we have system of equations:

$$
\begin{gathered}
\left\{\begin{array}{c}
\sum_{i=0}^{4} y_{i}-a_{0}-a_{1} x_{i}=0 \\
\sum_{i=0}^{4}\left(y_{i}-a_{0}-a_{1} x_{i}\right) x_{i}=0
\end{array}\right. \\
\left\{\begin{array}{l}
5 a_{0}+a_{1} \sum_{i=1}^{4} x_{i}=\sum_{i=1}^{4} y_{i} \\
\left(a_{0} \sum_{i=1}^{4} x_{i}+a_{1} \sum_{i=1}^{4} x_{i}^{2}=\sum_{i=1}^{4} x_{i} y_{i}\right.
\end{array}\right.
\end{gathered}
$$

Substituting values we have:

$$
\left\{\begin{aligned}
5 a_{0}+10 a_{1} & =48.38 \\
10 a_{0}+30 a_{1} & =156.39
\end{aligned}\right.
$$

Solution of this system is

$$
\begin{aligned}
& a_{0}=-\frac{9}{4}=-2.25 \\
& a_{1}=\frac{5963}{1000}=5.963
\end{aligned}
$$

Thus best fit line is

$$
y=-2.25+5.963 x
$$

(c) Use the normal equation to fit a parabola $y=a_{0}+a_{1} x+a_{2} x^{2}$ to the data.

In case

$$
y=a_{0}+a_{1} x+a_{2} x^{2}
$$

we have:

$$
f_{0}(x)=1 ; f_{1}(x)=x ; f_{2}(x)=x^{2}
$$

Thus system of equations is such:

$$
\left.\begin{array}{c}
\left\{\sum_{i=0}^{4} y_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}=0\right. \\
\sum_{i=0}^{4}\left(y_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right) x_{i}=0 \\
\sum_{i=0}^{4}\left(y_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right) x_{i}^{2}=0
\end{array}\right\} \begin{gathered}
5 a_{0}+a_{1} \sum_{i=1}^{4} x_{i}+a_{2} \sum_{i=1}^{4} x_{i}^{2}=\sum_{i=1}^{4} y_{i} \\
\left\{a_{0} \sum_{i=1}^{4} x_{i}+a_{1} \sum_{i=1}^{4} x_{i}^{2}+a_{2} \sum_{i=1}^{4} x_{i}^{3}=\sum_{i=1}^{4} x_{i} y_{i}\right. \\
a_{0} \sum_{i=1}^{4} x_{i}^{2}+a_{1} \sum_{i=1}^{4} x_{i}^{3}+a_{2} \sum_{i=1}^{4} x_{i}^{4}=\sum_{i=1}^{4} x_{i}^{2} y_{i}
\end{gathered}
$$

Substituting all $x_{i}$ and $y_{i}$ we have:

$$
\left\{\begin{array}{c}
5 a_{0}+10 a_{1}+30 a_{2}=48.38 \\
10 a_{0}+30 a_{1}+100 a_{2}=156.39 \\
30 a_{0}+100 a_{1}+354 a_{2}=543.65
\end{array}\right.
$$

Solution of this system is

$$
a_{0}=-\frac{9}{70}=-0.1286
$$

$$
\begin{gathered}
a_{1}=\frac{12041}{7000}=1.7201 \\
a_{2}=\frac{297}{280}=1.0607
\end{gathered}
$$

So quadratic fit function is

$$
y=-0.1286+1.7201 x+1.0607 x^{2}
$$

(d) Graph the data using appropriate software and your fitted curves on the same axis. Which do you think fits the data best?


Quadratic line fits the data better.
(e) Construct the research a mathematical method to determine which line fits best. Describe the method and use it to determine which of the curves gives the best fit.

The line gives better fit if sum of squared differences between data points and points on the line is lesser.

Sum of squares for line fit:

$$
S_{1}^{2}=\sum_{i=1}^{N}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}=16.1232
$$

Sum of squares for parabola fit:

$$
S_{2}^{2}=\sum_{i=1}^{N}\left(y_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)^{2}=0.2716
$$

We see that sum of squared differences is much lesser for quadratic model. Thus parabola fits the data better.
4) Consider the matrix

$$
A=\left[\begin{array}{ccccc}
4 & 8 & -2 & 10 & -16 \\
9 & 18 & -7 & 30 & -41 \\
-3 & -6 & 2 & -9 & 13
\end{array}\right]
$$

(a) Find the basis for the null space of A.

Let's reduce matrix A to row echelon form:

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
4 & 8 & -2 & 10 & -16 \\
9 & 18 & -7 & 30 & -41 \\
-3 & -6 & 2 & -9 & 13
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & -\frac{1}{2} & \frac{5}{2} & -4 \\
9 & 18 & -7 & 30 & -41 \\
-3 & -6 & 2 & -9 & 13
\end{array}\right] \sim \\
& \begin{array}{c}
\left.\left[\begin{array}{ccccc}
1 & 2 & -\frac{1}{2} & \frac{5}{2} & -4 \\
\sim & 0 & -\frac{5}{2} & \frac{15}{2} & -5 \\
0 & 0 & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right] \sim \begin{array}{ccccc}
\Gamma_{1} & 2 & -\frac{1}{2} & \frac{5}{2} & -4 \\
0 & 0 & 1 & -3 & 2 \\
0 & 0 & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & -3 \\
0 & 0 & 1 & -3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}
\end{aligned}
$$

Thus null space of the matrix is described by equalities:

$$
x_{1}=-2 x_{2}-x_{4}+3 x_{5}
$$

$x_{2}$ is arbitrary

$$
x_{3}=3 x_{4}-2 x_{5}
$$

$x_{4}, x_{5}$ are arbitrary
So basis for the null space of $A$ is

$$
B=\{(-2,1,0,0,0),(-1,0,3,1,0),(3,0,-2,0,1)\}
$$

(b)

Let's check conditions:

$$
x_{1}=-2 x_{2}-x_{4}+3 x_{5}
$$

and

$$
x_{3}=3 x_{4}-2 x_{5}
$$

$-8=-2 \cdot 2-1+3 \cdot(-1)-$ holds
$5=3 \cdot 1-2 \cdot(-1)-$ holds
So vector $v$ is in the nullspace of $A$.

