Sample: Topology - Applied Topology

Task 1.

Give an explicit formula for a homeomorphism from a square to a circle in the Euclidean plane.

Proof. Let

$$
S^{1}=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

be the unit circle in \mathbf{R}^{2}, and

$$
Q=\partial([0,1] \times[0,1])=\left\{(x, y) \in \mathbf{R}^{2} \mid \max \{|x|,|y|\}=1\right.
$$

be the square with side 2 in the Euclidean plane centered at the origin, see Figure:

Define the map

$$
f: Q \rightarrow S^{1}
$$

by the formula:

$$
f(x, y)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

Since

$$
\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}=\frac{x^{2}+y^{2}}{x^{2}+y^{2}}=1
$$

we see that $f(Q) \subset S^{1}$.
We claim that f is homeomorphism.
Geometrically, f acts as follows. Let $z \in Q$. Consider the straight segment $[0, z]$ connecting the origin $O=(0,0)$ with the point z. This segment intersect S^{1} at a unique point, and this point is denoted by $f(z)$, see Figure above.
To show that f is a homeomorphism it suffices to show that f is a continuous bijection whose inverse is also continuous.

1) \boldsymbol{f} is continuous. Notice that the same formula for f defines the map

$$
F: \mathbf{R}^{2} \backslash 0 \rightarrow S^{1}
$$

by the formula:

$$
F(x, y)=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right) .
$$

This map is continuous, since $\sqrt{x^{2}+y^{2}} \neq 0$ for all $(x, y) \neq(0,0)$.
But f is the restriction of F onto Q, and so f is continuous.
2) \boldsymbol{f} is a bijection. For $z=(x, y) \neq 0$ let

$$
R_{z}=\left\{t z=(t x, t y) \in \mathbf{R}^{2} \mid t>0\right\}
$$

be the open ray starting at the origin and passing through z.

Lemma. For any $z \neq 0$, each of the following intersections

$$
R_{z} \cap Q, R_{z} \cap S^{1}
$$

consists of a unique point.

This lemma implies that f is a bijection.
Indeed, first notice that if $z \in Q$, then

$$
z=R_{z} \cap Q
$$

and by geometrical description of f

$$
f(z)=R_{z} \cap S^{1}
$$

Now if $z_{1} \neq z_{2} \in Q$, then the rays $R_{z_{1}} \cap R_{z_{2}}=\emptyset$, and so

$$
f\left(z_{1}\right)=R_{z_{1}} \cap S^{1} \neq R_{z_{2}} \cap S^{1} \neq f\left(z_{2}\right)
$$

Thus \boldsymbol{f} is injective.
Moreover, let $p \in S^{1}$ and

$$
z=R_{p} \cap Q
$$

then $p=f(z)$, and so \boldsymbol{f} is surjective.
Proof of Lemma. Suppose $z_{1}=\left(x_{1}, y_{1}\right), z_{2}=\left(x_{2}, y_{2}\right) \in R_{z} \cap S^{1}$. Then

$$
x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}=1
$$

and

$$
z_{1}=\left(x_{1}, y_{1}\right)=t_{1} z_{1}=\left(t_{1} x, t_{1} y\right), z_{2}=\left(x_{2}, y_{2}\right)=t_{2} z_{2}=\left(t_{2} x, t_{2} y\right)
$$

that is

$$
x_{1}=t_{1} x, y_{1}=t_{1} y, x_{2}=t_{2} x, y_{2}=t_{2} y
$$

Then for $i=1,2$

$$
x_{i}^{2}+y_{i}^{2}=t_{i}^{2} x^{2}+t_{i}^{2} y^{2}=t_{i}^{2}\left(x^{2}+y^{2}\right)=1
$$

so

$$
t_{1}^{2}\left(x^{2}+y^{2}\right)=t_{2}^{2}\left(x^{2}+y^{2}\right)=1
$$

Since $z \neq 0$, we have that $x^{2}+y^{2} \neq 0$, and so

$$
t_{1}^{2}=t_{2}^{2}
$$

But $t_{1}, t_{2}>0$, whence

$$
t_{1}=t_{2}
$$

and thus $z_{1}=z_{2}$.
Similarly, suppose $z_{1}=\left(x_{1}, y_{1}\right), z_{2}=\left(x_{2}, y_{2}\right) \in R_{z} \cap Q$. Thus

$$
\max \left\{\left|x_{1}\right|,\left|y_{1}\right|\right\}=\max \left\{\left|x_{2}\right|,\left|y_{2}\right|\right\}=1,
$$

and

$$
z_{1}=\left(x_{1}, y_{1}\right)=t_{1} z_{1}=\left(t_{1} x, t_{1} y\right), z_{2}=\left(x_{2}, y_{2}\right)=t_{2} z_{2}=\left(t_{2} x, t_{2} y\right)
$$

that is

$$
x_{1}=t_{1} x, y_{1}=t_{1} y, x_{2}=t_{2} x, y_{2}=t_{2} y
$$

Then for $i=1,2$

$$
\max \left\{\left|x_{i}\right|,\left|y_{i}\right|\right\}=\max \left\{\left|t_{i} x\right|,\left|t_{i}, y\right|\right\}=t_{i} \max \{|x|,|y|\}=1,
$$

since $t_{i}>0$. Thus

$$
t_{1} \max \{|x|,|y|\}=t_{2} \max \{|x|,|y|\}=1
$$

As $z \neq 0$, we have that $\max \{|x|,|y|\}>0$, whence

$$
t_{1}=t_{2}
$$

and thus $z_{1}=z_{2}$. Lemma is proved.
3) \boldsymbol{f}^{-1} is continuous. By 1) and 2) f is a continuous bijection. Since Q is compact, and S^{1} is Hausdorff, it follows that the inverse of f is also continuous, and so f is a homeomorphism.

Task 2.

Let $D^{\circ}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1\right\}$ be the open disk.
(a) Let $f: D^{\circ} \rightarrow \mathbf{R}^{3}$ be defined by $f((r, \theta))=(r, \theta, r)$ where (r, θ) and (r, θ, r) are in polar and cylindrical coordinates, respectively. Show that f is an embedding of D° and describe the embedded copy $f\left(D^{\circ}\right)$ in \mathbf{R}^{3}.
(b) Describe the stereographic projection in \mathbf{R}^{3} of $f\left(D^{\circ}\right)$ onto the plane $z=0$ from a light source located at the point $(0,0,1)$. Is this a homeomorphism? Find an explicit formula for this stereographic projection function p.
(c) Describe all planes in \mathbf{R}^{3} for which stereographic projection of $f\left(D^{\circ}\right)$ from a light source at $(0,0,1)$ is a homeomorphism.

Solution.

(a) Notice that in Cartesian coordinates (x, y) we have that $r=\sqrt{x^{2}+y^{2}}$. Then the map $f: D^{\circ} \rightarrow \mathbf{R}^{3}$

$$
f((r, \theta))=(r, \theta, r)
$$

in coordinates (x, y) is given by the formula:

$$
f(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}}\right)
$$

This formula shows that $f \boldsymbol{f}$ is continuous.
Moreover \boldsymbol{f} is injective, since for $(r, \theta) \neq\left(r^{\prime}, \theta^{\prime}\right) \in D^{\circ}$, we have that

$$
f((r, \theta))=(r, \theta, r) \neq\left(r^{\prime}, \theta^{\prime}, r^{\prime}\right)=f((r, \theta))
$$

Also consider the map $p: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by $p(x, y, z)=(x, y)$. Then

$$
p \circ f(x, y)=p\left(x, y, \sqrt{x^{2}+y^{2}}\right)=(x, y)
$$

and so the restriction of p onto $f\left(D^{\circ}\right)$ is the inverse to f. This proves that f is an embedding, i.e. a homeomorphism onto its image.
Notice $f\left(D^{\circ}\right)$ is the graph of the function $g(x, y)=\sqrt{x^{2}+y^{2}}$, and so it is the open cone over the circle

$$
\left\{x^{2}+y^{2}=1, z=1\right\}
$$

and vertex at the origin

(b) Let us find formula for stereographic projection π from the point $N=(0,0,1)$. This maps associates to each point $A(x, y, z) \in \mathbf{R}^{3}$ the intersection point of the ray $N A$ with the plane $\{z=0\}$. In particular, this map is defined only for points A with $z<1$, i.e on the open halfspace

$$
X=\{(x, y, z) \mid z<1\} .
$$

Notice that this projection preserves θ, that is $\theta(A)=\theta(\pi(A))$. Consider the figure:

It follows from similarity of triangles $\triangle A T N$ and $\pi(A) O N$ that

$$
\frac{R}{r}=\frac{1}{1-z},
$$

whence π is given by the formula

$$
\pi(r, \theta, z)=\left(\frac{r}{1-z}, \theta\right)
$$

Then the composition $\pi \circ f: D^{\circ} \rightarrow \mathbf{R}^{2}$ is given by the formula

$$
\pi \circ f(r, \theta)=\pi(r, \theta, r)\left(\frac{r}{1-r}, \theta\right)
$$

Notice that the function

$$
y(r)=\frac{r}{1-r}=\frac{r-1+1}{1-r}=\frac{1}{1-r}-1
$$

is strictly monotone and maps the interval $[0,1)$ onto $[0,+\infty)$. Its inverse is given by

$$
y^{-1}(\rho)=1-\frac{1}{1+\rho}=\frac{1+\rho-1}{1+\rho}=\frac{\rho}{1+\rho}=
$$

This implies that $\pi \circ f$ is a homeomorphism and its inverse is given by

$$
(\pi \circ f)^{-1}(r, \theta)=\left(\frac{r}{1+r}, \theta\right)
$$

(c) Let P be a plane in \mathbf{R}^{3} such that π is defined on P. As noted in 2) the stereographic projection $\pi: X \rightarrow \mathbf{R}^{2}$ is defined only for points (x, y, z) with $z<1$, whence $P \subset X$. But this is possible only if P is given by the equation $z=c$, where $c<1$.
We claim that for every such plane the restriction of π to P is a homeomorphism $P \rightarrow \mathbf{R}^{2}$. Let $(r, \phi, c) \in P$. Then

$$
\pi(r, \theta, c)=\left(\frac{r}{1-c}, \theta\right)
$$

Therefore in Cartesian coordinates we have that

$$
\pi(x, y, c)=\left(\frac{x}{1-c}, \frac{y}{1-c}\right)
$$

that is the restriction $\left.\pi\right|_{P}$ of π to P is a homothety with coefficient $\frac{1}{1-c}$. Hence its inverse is a homothety with coefficient $1-c$, and so $\left.\pi\right|_{P}$ is a homeomorphism.

Task 3.
Consider the figure:

(a)

(b)

(C)

Are these sets open, closed, both, or neither in $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}_{l}$, where \mathbf{R}_{l} is the plane with lower limit topology?

Solution.

Recall that lower limit topology on \mathbf{R} is generated by half-open intervals

$$
\{[a, b) \subset \mathbf{R} \mid a<b\}
$$

The set \mathbf{R} with this topology is denoted by \mathbf{R}_{l}.
Notice that every interval of the form (a, b) is open in \mathbf{R}_{l}, since

$$
(a, b)=\bigcup_{i \geq 1}[a-1 / i, b)
$$

Therefore every closed (resp. open) subset of \mathbf{R} is also closed (resp. open) in \mathbf{R}_{l}, and so topology on \mathbf{R}_{l} is stronger than the usual topology on \mathbf{R}.
This implies that the topology on $\mathbf{R}_{l} \times \mathbf{R}_{l}$ is stronger than the topology of $\mathbf{R}_{l} \times \mathbf{R}$, which in turn is stronger than topology on $\mathbf{R}^{2}=\mathbf{R} \times \mathbf{R}$.
Also notice that topology on $\mathbf{R} \times \mathbf{R}$ is generated by sets of the form

$$
\{(a, b) \times(c, d) \mid a<b, c<d\}
$$

topology on $\mathbf{R}_{l} \times \mathbf{R}$ is generated by sets of the form

$$
\{[a, b) \times(c, d) \mid a<b, c<d\}
$$

and topology on $\mathbf{R}_{l} \times \mathbf{R}_{l}$ is generated by sets of the form

$$
\{[a, b) \times[c, d) \mid a<b, c<d\}
$$

see figure:

(a)

(b)

(C)
(a) The set in (a) is a closed 2-disk and can be defined by the formula:

$$
A=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2} \leq 1\right.
$$

Let us show that A is closed. Let $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \geq 1} \subset A$ be a sequence of points converging to some $(x, y) \in \mathbf{R}^{2}$. Then

$$
x^{2}+y^{2}=\lim _{i \rightarrow \infty} x_{i}^{2}+y_{i}^{2} \leq 1
$$

whence $(x, y) \in A$, and so A is closed.
Therefore A is also closed in $\mathbf{R}_{l} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}_{l}$.
On the other hand, A is not open in neither of $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}_{l}$.
Since $\mathbf{R}_{l} \times \mathbf{R}_{l}$ has the strongest topology, it suffices to prove that A is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. Consider the point $z=(1,0) \in A$ and let $U=[a, b) \times[c, d)$ be any neighborhood of z in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, so $a \leq 1<b$ and $c \leq 0<d$. Take any $q \in(1, b)$. Then the point $(q, 0) \in U$, but $q \notin A$. Thus $U \not \subset A$, and so A is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. Therefore it is not open in $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times$ R.
(b) The set in (b) can be given by the formula:

$$
B=\left\{(x, y) \in \mathbf{R}^{2}| | x|+|y| \leq 1\} \backslash\{(x, y)| | x|+|y|=1 \text { and } y>0\}\right.
$$

This set is neither open nor closed in any of topologies of $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}_{l}$.
Again it suffices to show this for $\mathbf{R}_{l} \times \mathbf{R}_{l}$.
Let us show that B is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. Consider the point $(-1,0) \in B$ and let $U=$ $[a, b) \times[c, d)$ be any neighborhood of z in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, so $a \leq-1<b$ and $c \leq 0<d$. Take any $q \in(0, d)$. Then the point $(-1, q) \in U$, but $q \notin B$, since

$$
|-1|+|q|>1
$$

Thus $U \ell B$, and so B is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. Therefore it is not open in $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}$.
Let us show that B is not closed in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. For this it suffices to show that $\mathbf{R}_{l} \times \mathbf{R}_{l} \backslash B$ is not open. Again consider the point $(0.5,-0.5) \in B$ and let $U=[a, b) \times[c, d)$ be any neighborhood of z in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, so $a \leq 0.5<b$ and $c \leq-0.5<d$. Take any $q \in(0.5, b)$. Then the point $(q,-0.5) \in U$, but $q \notin B$, since

$$
|q|+|-0.5|>|0.5|+|-0.5|=1
$$

Thus $U \not \subset \mathbf{R}_{l} \times \mathbf{R}_{l} \backslash B$, and so $\mathbf{R}_{l} \times \mathbf{R}_{l} \backslash B$ is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, whence B is not closed in $\mathbf{R}_{l} \times \mathbf{R}_{l}$ Therefore it is not open in $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}$ as well.
(c) The set in (c) can be given by the formula:

$$
C=\left\{(x, y) \in \mathbf{R}^{2}| | x|+|y|<1\} \cup\{(x, y)| | x|+|y|=1 \text { and } x+y=-1\} .\right.
$$

We claim that this set is also neither open nor closed in any of topologies of $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}$, $\mathbf{R}_{l} \times \mathbf{R}_{l}$.
Again it suffices to show this for $\mathbf{R}_{l} \times \mathbf{R}_{l}$.
Let us show that C is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. Consider the point $(-1,0) \in C$ and let $U=$ $[a, b) \times[c, d)$ be any neighborhood of z in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, so $a \leq-1<b$ and $c \leq 0<d$. Take any $q \in(0, d)$. Then the point $(-1, q) \in U$, but $q \notin C$, since

$$
|-1|+|q|>1
$$

Thus $U \varnothing C$, and so C is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. Therefore it is not open in $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}$.
Let us show that C is not closed in $\mathbf{R}_{l} \times \mathbf{R}_{l}$. For this it suffices to show that $\mathbf{R}_{l} \times \mathbf{R}_{l} \backslash C$ is not open. Again consider the point $(0.5,-0.5) \in C$ and let $U=[a, b) \times[c, d)$ be any neighborhood of z in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, so $a \leq 0.5<b$ and $c \leq-0.5<d$. Take any $q \in(0.5, b)$. Then the point $(q,-0.5) \in U$, but $q \notin C$, since

$$
|q|+|-0.5|>|0.5|+|-0.5|=1
$$

Thus $U \varnothing \mathbf{R}_{l} \times \mathbf{R}_{l} \backslash C$, and so $\mathbf{R}_{l} \times \mathbf{R}_{l} \backslash C$ is not open in $\mathbf{R}_{l} \times \mathbf{R}_{l}$, whence C is not closed in $\mathbf{R}_{l} \times \mathbf{R}_{l}$ Therefore it is not open in $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}$ as well.

Answer. In the case (a) the set A is closed in each spaces $\mathbf{R} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}_{l}$ but not open in neither of the spaces.
In the cases (b) and (c) the corresponding sets are neither open nor closed in any of the spaces $\mathbf{R} \times \mathbf{R}, \quad \mathbf{R}_{l} \times \mathbf{R}, \mathbf{R}_{l} \times \mathbf{R}_{l}$.

