We are given that A=⎣⎡100.530.50011⎦⎤, b=⎣⎡414⎦⎤
(a) Using the matrix inversion
A−1=det(A)1A−1=1∗0.5∗1+3∗0.5∗0.51⎣⎡0.5−330.51−1−0.251.50.5⎦⎤T=⎣⎡0.250.25−0.125−1.50.50.751.5−0.50.25⎦⎤
⎣⎡xyz⎦⎤=A−1b=⎣⎡5.5−0.51.25⎦⎤
(b) Using the Cramer's rule
det(A1)=det⎣⎡41430.50011⎦⎤=4∗0.5∗1+3∗1∗(−1+4)=11
det(A2)=det⎣⎡100.5414011⎦⎤=1∗(1∗1−1∗4)+4∗1∗0.5=−1
det(A3)=det⎣⎡100.530.50414⎦⎤=1∗0.5∗4+3∗1∗0.5−4∗0.5∗0.5=2.5
⎣⎡xyz⎦⎤=⎣⎡det(A1)/det(A)det(A2)/det(A)det(A3)/det(A)⎦⎤=⎣⎡5.5−0.51.25⎦⎤
Comments