We determine the power of all photons
"P_{\\sum ph}=0.8\\cdot P_{LED}=0.8\\cdot 5=4watt"
Also, the power of all photons is equal to
"P_{\\sum ph}=P_f\\cdot N_{f}"
where will we write
"N_f=\\frac{P_{\\sum ph}}{P_f}=\\frac{P_{\\sum ph}}{(h_ \\cdot \\nu)\/t}=\\frac{P_{\\sum ph}}{(h_ \\cdot \\frac{\u0441}{\\lambda})\/t}=\\frac{t\\cdot\\lambda\\cdot P_{\\sum ph}}{h \\cdot c}"
Substitute the numbers, we get
"N_f=\\frac{1(s)\\cdot660 \\cdot10^{-9}(m) \\cdot 4(watt)}{6.626\\cdot10^{-34}(J\\cdot s) \\cdot 3 \\cdot 10^8 (m\/s)}=1.328 \\cdot 10^{19} photons"
Comments
Leave a comment