h h h - Plank constant
ν \nu ν - frequency of photon
λ \lambda λ - wave lenght of photon
c c c - speed of light
A A A - work function of the material
m e m_e m e - mass of electron
V m V_m V m - the maximum velocity of electrons ejected from a material
c ν = λ ⇒ ν = c λ \dfrac{c}{\nu}=\lambda \Rightarrow \nu=\dfrac{c}{\lambda} ν c = λ ⇒ ν = λ c
Energy of photon h ν = h c λ h\nu=\dfrac{hc}{\lambda} h ν = λ h c (according to hypothesis of Plank)
According to energy Einstein formula
h ν = m e V m 2 2 + A ⇒ h c λ = m e V m 2 2 + A h\nu=\dfrac{m_eV_m^2}{2}+A \Rightarrow \dfrac{hc}{\lambda} = \dfrac{m_eV_m^2}{2}+A h ν = 2 m e V m 2 + A ⇒ λ h c = 2 m e V m 2 + A
h c λ − A = m e V m 2 2 \dfrac{hc}{\lambda} -A= \dfrac{m_eV_m^2}{2} λ h c − A = 2 m e V m 2
2 h c λ − 2 A = m e V m 2 \dfrac{2hc}{\lambda} -2A= m_eV_m^2 λ 2 h c − 2 A = m e V m 2
2 h c λ − 2 A λ λ = m e V m 2 \dfrac{2hc}{\lambda} -\dfrac{2A\lambda}{\lambda}= m_eV_m^2 λ 2 h c − λ 2 A λ = m e V m 2
2 h c − 2 A λ λ = m e V m 2 \dfrac{2hc-2A\lambda}{\lambda} = m_eV_m^2 λ 2 h c − 2 A λ = m e V m 2
2 ( h c − A λ ) λ = m e V m 2 \dfrac{2(hc-A\lambda)}{\lambda} = m_eV_m^2 λ 2 ( h c − A λ ) = m e V m 2
2 ( h c − A λ ) λ m e = V m 2 \dfrac{2(hc-A\lambda)}{\lambda m_e} = V_m^2 λ m e 2 ( h c − A λ ) = V m 2
V m = 2 ( h c − A λ ) λ m e ≈ 2.25 ∗ 1 0 6 m s V_m=\sqrt{\dfrac{2(hc-A\lambda)}{\lambda m_e}}\approx2.25*10^6 \dfrac{m}{s} V m = λ m e 2 ( h c − A λ ) ≈ 2.25 ∗ 1 0 6 s m
Answer: 2.25 ∗ 1 0 6 m s 2.25*10^6 \dfrac{m}{s} 2.25 ∗ 1 0 6 s m
Comments