Using the definition of commutator of two operators, [A,B]=AB−BA, let us open the nested commutators:
[A,[B,C]]+[B,[C,A]+[C,[A,B]]=
=A(BC−CB)−(BC−CB)A+B(CA−AC)−(CA−AC)B+C(AB−BA)−(AB−BA)C Opening the brackets, and regrouping the terms, obtain:
(ABC−ABC)+(−ACB+ACB)+(−BCA+BCA)+(CBA−CBA)+(−BAC+BAC)+(−CAB+CAB)=0
Comments