Question #246529

show that [A,[B,C]]+[B,[C,A]+[C,[A,B]]=0


1
Expert's answer
2021-10-04T10:37:26-0400

Using the definition of commutator of two operators, [A,B]=ABBA[A, B] = A B - B A, let us open the nested commutators:

[A,[B,C]]+[B,[C,A]+[C,[A,B]]=[A,[B,C]]+[B,[C,A]+[C,[A,B]] =

=A(BCCB)(BCCB)A+B(CAAC)(CAAC)B+C(ABBA)(ABBA)C= A (BC - CB) - (BC - CB)A + B(CA - AC) - (CA - AC) B + C (AB - BA) - (AB - BA) C Opening the brackets, and regrouping the terms, obtain:

(ABCABC)+(ACB+ACB)+(BCA+BCA)+(CBACBA)+(BAC+BAC)+(CAB+CAB)=0(ABC - ABC) + (- ACB + ACB) + (-BCA + BCA) + (CBA - CBA) + (-BAC + BAC) + (-CAB + CAB) = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS