show that [A,[B,C]]+[B,[C,A]+[C,[A,B]]=0
Using the definition of commutator of two operators, "[A, B] = A B - B A", let us open the nested commutators:
"[A,[B,C]]+[B,[C,A]+[C,[A,B]] ="
"= A (BC - CB) - (BC - CB)A + B(CA - AC) - (CA - AC) B + C (AB - BA) - (AB - BA) C" Opening the brackets, and regrouping the terms, obtain:
"(ABC - ABC) + (- ACB + ACB) + (-BCA + BCA) + (CBA - CBA) + (-BAC + BAC) + (-CAB + CAB) = 0"
Comments
Leave a comment