Show that the uncertainty in the measurement of a physical quantity "f" is equal to the following expression:
Δf=√(⟨f2⟩−⟨f⟩2)Δf=√(⟨f^2 ⟩-⟨f⟩^2 )Δf=√(⟨f2⟩−⟨f⟩2)
Assume
Displacement operator
We know that displacement operator
∆f=ℏmw(n+12)∆f=\frac{\hbar}{mw}(n+\frac{1}{2})∆f=mwℏ(n+21)
<f>=0
<f2>=ℏmw(n+12)<f^2>=\frac {\hbar}{mw}(n+\frac{1}{2})<f2>=mwℏ(n+21)
∆f=<f2>−<f>2∆f=\sqrt{<f^2>-<f>^2}∆f=<f2>−<f>2
Put value in eqution
∆f=[ℏmw(n+12)]2−0∆f=\sqrt{[\frac{\hbar}{mw}(n+\frac{1}{2})]^2-0}∆f=[mwℏ(n+21)]2−0
Left hand side = right hand side
Hence proved
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments