An object of mass 2 kg is launched at an angle of 30o above the ground with an initial speed of 40 m/s. Neglecting air resistance , calculate:
i. the kinetic energy of the object when it is launched from the the ground.
ii. the maximum height attained by the object .
iii. the speed of the object when it is 12 m above the ground.
Given:
"m=2\\:\\rm kg"
"\\theta=30^\\circ"
"v_0=40\\:\\rm m\/s"
"g=9.8\\:\\rm m\/s^2"
(i)
"K_0=\\frac{mv_0^2}{2}=\\frac{2*40^2}{2}=1600\\:\\rm J"(ii)
"h_{\\max}=\\frac{(v_0\\sin\\theta)^2}{2g}=\\frac{(40\\sin30^\\circ)^2}{2*9.8}=20\\:\\rm m"(iii)
"v=\\sqrt{v_0^2-2gh}=\\sqrt{40^2-2*9.8*12}=37\\:\\rm m\/s"
Comments
Leave a comment