show that unit vector normal to the surface n= ∇φ ÷ | ∇φ | . find n for the ellipsoid.
φ = a(x^2) + b(y^2) +c(z^2)
Given:
"\u03c6 = ax^2 + by^2+cz^2"
The gradient of scalar field is given by
"\\nabla \\varphi=\\frac{\\partial \\varphi}{\\partial x}\\hat i+\\frac{\\partial \\varphi}{\\partial y}\\hat j+\\frac{\\partial \\varphi}{\\partial z}\\hat k"Hence
"\\nabla \\varphi=2ax\\hat i+2by\\hat j+2cz\\hat k""|\\nabla \\varphi|=2\\sqrt{(ax)^2 +(by)^2+(cz)^2}"
"{\\vec n}=\\frac{\\nabla \\varphi}{|\\nabla \\varphi|}=\\frac{ax\\hat i+by\\hat j+cz\\hat k}{\\sqrt{(ax)^2 +(by)^2+(cz)^2}}"
Comments
Leave a comment