Transverse waves on a string have a wave speed 8.00 m/s, amplitude 0.0700 m, and
wavelength 0.320 m. The waves travel in the -x-direction, and at t = 0, x = 0, the end of
the string has its maximum upward displacement. (a) Find the frequency, period, and
wave number of these waves. (b) Write a wave function describing the wave. (c) Find
the transverse displacement of a particle at x = 0.360 m at time t = 0.150 s
Given:
"v=8.00\\:\\rm m\/s"
"A=\\rm 0.0700\\: m"
"\\lambda=0.320\\: \\rm m"
(a) the frequency
"f=\\frac{v}{\\lambda}=\\frac{8.00}{0.320}=25.0\\:\\rm Hz"the period
"T=\\frac{1}{f}=\\frac{1}{25.0}=0.0400\\:\\rm s"the wave number
"k=\\frac{2\\pi}{\\lambda}=\\frac{6.28}{0.320}=19.6\\:\\rm m^{-1}"(b) the wave function describing the wave
"y(x,t)=A\\cos(2\\pi ft-kx)\\\\\ny(x,t)=0.0700\\cos (157t-19.6x)"(c)
Comments
Leave a comment