. A container with glass walls has oil inside. The total length, of the containers is 14 cm. The walls of the container have a thickness () of 25 mm and a refractive index of 1.58. The container is surrounded by air (n = 1), and the oil inside the container has a refractive index of 1.42. The angle of incidence, is 30º. Calculate the lateral shift, x, for this container.. A container with glass walls has oil inside. The total length, of the containers is 14 cm. The walls of the container have a thickness () of 25 mm and a refractive index of 1.58. The container is surrounded by air (n = 1), and the oil inside the container has a refractive index of 1.42. The angle of incidence, is 30º. Calculate the lateral shift, x, for this container.
Thickness of walls of container "\\left(t_{1}\\right)=2.5 \\mathrm{~cm}"
So, Thickness of oil (which is inside the container)
"\\begin{aligned}\n\nt_{2}=l-2 t_{1} &=14 \\mathrm{~cm}-2 \\times 2.5 \\mathrm{cm} \\\\\n\n&=9 \\mathrm{~cm}\n\n\\end{aligned}"
Now,
For first lateral shift of "\\Delta x_{1}" (when lignt travels from air into glass wall).
"\\begin{aligned}\n\ni=30^{\\circ}, & n_{1}=1, \\quad n_{2}=1.58 \\\\\n\nt=t_{1}=2.5 \\mathrm{~cm} & \\\\\n\n\\text { so, } & 1 \\times \\sin 30^{\\circ}=1.58 \\times \\sin r_{1} \\\\\n\n& \\sin r_{1}=\\frac{0.5}{1.58}=0.32 \\\\\n\n& r_{1}=18.45^{\\circ}\n\n\\end{aligned}"
"\\text { So, } \\begin{aligned}\n\n\\Delta x_{1} &=2.5 \\mathrm{~cm} \\times \\frac{\\sin \\left(30^{\\circ}-18.45^{\\circ}\\right)}{\\cos (18.450)} \\\\\n\n&=0.528 \\mathrm{~cm}\n\n\\end{aligned}"
For second latent shift of "\\Delta x_{2}" (when light travels from wall into oil)
"\\begin{aligned}\n\ni_{2}=r_{1}=18.45\\degree \\quad n_{2}=1.58 \\quad n_{3}=1.42 \\\\\n\nt=t_{2}=9 \\mathrm{~cm} \\\\\n\n\\text { so, } \\quad 1.58 \\times \\sin (18.45)=1.42 \\times \\sin r_{2} \\\\\n\n\\Rightarrow \\quad r_{2}=20.62^{\\circ} \\\\\n\n\\text { so, } \\begin{aligned}\n\n\\Delta x_{2} &=9 \\mathrm{~cm} \\times \\frac{\\sin (18.45-20.62)}{\\cos (20.62)} \\\\\n\n&=-0.364 \\mathrm{~cm}\n\n\\end{aligned}\n\n\\end{aligned}"
"\\Rightarrow negative\\ \\Delta x_{2}" means light is traveling from denser to rarer medium "\\left(n_{2}>n_{3}\\right)" . So, it bends towards normal.
For third lateral shift of "\\Delta x_{3}" (when light trand from oil into wall of container)
"\\begin{aligned}\n\n&i_{3}=r_{2}=20.62^{\\circ} \\quad n_{4}=n_{2}=1.58 \\quad n_{3}=1.42 \\\\\n\n&t=t_{1}=2.5 \\mathrm{~cm} \\\\\n\n&\\text { so, } \\quad 1.42 \\times \\sin (20.62)=1.58 \\times \\sin r_{3} \\\\\n\n&\\Rightarrow r_{3}=18.45^{\\circ}\n\n\\end{aligned}"
So,
"\\begin{aligned}\n\n\\Delta x_{3} &=2.5 \\mathrm{~cm} \\times \\frac{\\sin (20.62-18.45)}{\\cos 18.45} \\\\\n\n&=0.1 \\mathrm{~cm}\n\n\\end{aligned}"
Total lateral shift
"\\begin{aligned}\n\n\\Delta x &=\\Delta x_{1}+\\Delta x_{2}+\\Delta x_{3} \\\\\n\n&=0.528 \\mathrm{~cm}-0.364 \\mathrm{~cm}+0.1 \\mathrm{~cm}\n\\\\ &=0.264\\mathrm{~cm}\n\n\\end{aligned}"
Comments
Leave a comment