Question #284482

Refraction of a plane wave at the interface between two dielectrics.

1
Expert's answer
2022-01-03T14:34:05-0500

We know that


Incidence waveE=E0ej(k.rwt)E=E_0e^{j(k.r-wt)}

Reflected wave

E=E01ej(k1.rw1t)E=E_{01}e^{j(k_1.r-w_1t)}

Refracted wave

E2=E02ej(k2.rw2t)E_2=E_{02}e^{j(k_2.r-w_2t)}

k1k_1 =Reflected wave propagation constant

k2=k_2= Refracted wave propagation constant

kk =Incidence wave Propagation constant

tangential of E


(E0)te(k.rwt)+(E0)te(k1.rw1t)=(E0)te(k2.rw2t)(E_0)_te^{(k.r-wt)}+(E_0)_te^{(k_1.r-w_1t)}=(E_0)_te^{(k_2.r-w_2t)}

k.r=k1.r=k2.rkx=k1x=k2xk.r=k_1.r=k_2.r\\k_x=k_{1x}=k_{2x}

For refracted


k2x=k1xk_{2x}=k_{1x}

k1xsinθ1=k1xsinθ2k_{1x}sin\theta_1=k_{1x}sin\theta_2

w1v1sinθ1=w2v2sinθ2\frac{w_1}{v_1}sin\theta_1=\frac{w_2}{v_2}sin\theta_2

w1=w2w_1=w_2

cv1sinθ1=cv2sinθ2\frac{c}{v_1}sin\theta_1=\frac{c}{v_2}sin\theta_2

n1sinθ1=n2sinθ2n_1sin\theta_1=n_2sin\theta_2

Refracted law



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS