Solution;
Given;
m1=0.25lbm=0.113kg
P1=30psig=206.843kPa
T1=70°F=294.261K
Use the SI units for ease in calculating;
Assuming;
v1=v2
We know;
PV=mRT
v1=206.8430.113×0.287×294.261
v1=v2=0.04614m3
Calculate the mass at 120°F;
T1P1=T2P2
P2=T1P1×T2=7030×120=51.42
P2=51.42psig=354.528kPa
Mass at this pressure;
m2=0.287×322.039354.528×0.04614=0.177kg
The critical mass,at 32psig;
mc=296.483×0.287220.632×0.04614=0.120kg
Mas that escapes to the atmosphere;
me=m2−mc=0.177−0.120
me=0.057kg
Answer;0.126lbm
(b)
T1P1=T3P3
Therefore;
PV=mRT
P=vmRT
P=0.046140.124×0.287×294..261
P=226.965kPa
P=32.918psig
Comments
Leave a comment