Answer to Question #295916 in Molecular Physics | Thermodynamics for dandan

Question #295916

Three pounds of perfect gas with R=38 ft.lb/lb.R and k= 1.667 have 300 Btu of heat added during a reversible nonflow constant pressure change of state. The initial temperature is 100 °F. Determine the

(A) final temperature

(B) change in heat ∆H

(C) W

(D) ∆U

(E) ∆S


1
Expert's answer
2022-02-10T15:09:17-0500

(1)


Cp=kark1=1.667×381.6671=94.97778=0.1221BTU/lbRC_p=\frac{kar}{k-1}=\frac{1.667\times38}{1.667-1}=\frac{94.97}{778}=0.1221BTU/lb R

Q=mcp(T2T1)Q=mc_p(T_2-T_1)

300=3×0.1221(T2560)300=3\times0.1221(T_2-560)

T2=1379=919°FT_2=1379=919°F

(B)

Q=mcp(T2T1)=HQ=mc_p(T_2-T_1)=H

H=300BTUH=300BTU

(C)


W=p(v2v1)=p(mRTp2mRT1p1)W=p(v_2-v_1)=p(\frac{mRT}{p_2}-\frac{mRT_1}{p_1})

W=pmR(T2pT1p)=mR(T2T1)W=pmR(\frac{T_2}{p}-\frac{T_1}{p})=mR(T_2-T_1)

W=3×38×(1379560)=120.008BTUW=3\times38\times(1379-560)=120.008BTU

(D)(D)


Cv=Rk1=381.6771×1778=0.0732BTU/lb.RC_v=\frac{R}{k-1}=\frac{38}{1.677-1}\times\frac{1}{778}=0.0732BTU/lb.R

U=mcv(T2T1)∆U=mc_v(T_2-T_1)


U=3×0.0732×(1379560)=179.85BTU∆U=3\times0.0732\times(1379-560)=179.85BTU

(e)


S=mcplnT2T2=4×0.1221ln1379560∆S=mc_pln\frac{T_2}{T_2}=4\times0.1221ln\frac{1379}{560}

S=0.3301=BTU/R∆S={0.3301}=BTU/R


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment