A 2.0-g particle moving at 6.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object.
(a) Find the speed of each particle after the collision.
2.0 g particle ___ m/s
1.0 g particle ___ m/s
(b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g.
2.0 g particle ___ m/s
10.0 g particle ___ m/s
(c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in parts (a) and (b).
KE in part (a) ___ J
KE in part (b) ___ J
a)
"V_1 = (\\frac{m_1-m_2}{m_1+m_2})v_1 + (\\frac{2m_2}{m_1+m_2})v_2 \\\\\n\nV_2 = (\\frac{m_1-m_2}{m_1+m_2})v_2 + (\\frac{2m_1}{m_1+m_2})v_1 \\\\\n\nm_1=2g \\\\\n\nm_2 = 1g \\\\\n\nv_1 = 6.2 \\;m\/s \\\\\n\nv_2 =0 \\\\\n\nV_1 = (\\frac{2-1}{2+1})6.2 +0 = 2.07 \\;m\/s \\\\\n\nV_2 = 0 + \\frac{2 \\times 2}{2+1}6.2 = 8.27 \\;m\/s"
b)
"m_1=2g \\\\\n\nm_2= 10g \\\\\n\nv_1 = 6.2 \\;m\/s \\\\\n\nv_2 = 0 \\\\\n\nV_1 = (\\frac{2-10}{2+10})6.2+0 = -4.13 \\;m\/s \\\\\n\nV_2 = 0 +(\\frac{2 \\times 2}{2+10})6.2 = 2.07 \\;m\/s"
c)
"KE_a = \\frac{1}{2}m_1v_1^2 \\\\\n\n= \\frac{1}{2} \\times 2 \\times 10^{-3} \\times (2.07)^2 = 4.37 \\times 10^{-3} \\;J \\\\\n\nKE_b = \\frac{1}{2}m_1v_1^2 \\\\\n\n= \\frac{1}{2} \\times 2 \\times 10^{-3} \\times (-4.13)^2 = 17.1 \\times 10^{-3} \\;J"
Comments
Leave a comment